首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   5篇
  2015年   2篇
  2007年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1990年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
We have previously described a new aspect of the Inhibitor of Apoptosis (IAP) family of proteins anti-apoptotic activity that involves the TAK1/JNK1 signal transduction pathway (1,2). Our findings suggest the existence of a novel mechanism that regulates the anti-apoptotic activity of IAPs that is separate from caspase inhibition but instead involves TAK1-mediated activation of JNK1. In a search for proteins involved in the XIAP/TAK1/JNK1 signaling pathway we isolated by yeast two-hybrid screening a novel X chromosome-linked IAP (XIAP)-interacting protein that we called ILPIP (hILP-Interacting Protein). Whereas ILPIP moderately activates JNK family members when expressed alone, it strongly enhances XIAP-mediated activation of JNK1, JNK2, and JNK3. The expression of a catalytically inactive mutant of TAK1 blocked XIAP/ILPIP synergistic activation of JNK1 thereby implicating TAK1 in this signaling pathway. ILPIP moderately protects against interleukin-1beta converting enzyme- or Fas-induced apoptosis and significantly potentiates the anti-apoptotic activity of XIAP. In vivo co-precipitation experiments show that both ILPIP and XIAP interact with TAK1 and tumor necrosis factor receptor-associated factor 6. Finally, expression of ILPIP did not affect the ability of XIAP to inhibit caspase activation, further supporting the idea that XIAP protection against apoptosis is achieved by two separate mechanisms: one requiring JNK1 activation and a second involving caspase inhibition.  相似文献   
2.
The inhibitor of apoptosis (IAP) family of proteins are highly conserved through evolution. However, the mechanisms by which these proteins interfere with apoptotic cell death have been enigmatic. Recently, we showed that one of the human IAP family proteins, XIAP, can bind to and potently inhibit specific cell death proteases (caspases) that function in the distal portions of the proteolytic cascades involved in apoptosis. In this study, we investigated three of the other known members of the human IAP family, c-IAP-1, c-IAP-2 and NAIP. Similarly to XIAP, in vitro binding experiments indicated that c-IAP-1 and c-IAP-2 bound specifically to the terminal effector cell death proteases, caspases-3 and -7, but not to the proximal protease caspase-8, caspases-1 or -6. In contrast, NAIP failed to bind tightly to any of these proteases. Recombinant c-IAP-1 and c-IAP-2 also inhibited the activity of caspases-3 and -7 in vitro, with estimated Kis of <=0.1 microM, whereas NAIP did not. The BIR domain-containing region of c-IAP-1 and c-IAP-2 was sufficient for inhibition of these caspases, though proteins that retained the RING domain were somewhat more potent. Utilizing a cell-free system in which caspases were activated in cytosolic extracts by addition of cytochrome c, c-IAP-1 and c-IAP-2 inhibited both the generation of caspase activities and proteolytic processing of pro-caspase-3. Similar results were obtained in intact cells when c-IAP-1 and c-IAP-2 were overexpressed by gene transfection, and apoptosis was induced by the anticancer drug, etoposide. Cleavage of c-IAP-1 or c-IAP-2 was not observed when interacting with the caspases, implying a different mechanism from the baculovirus p35 protein, the broad spectrum suicide inactivator of caspases. Taken together, these findings suggest that c-IAP-1 and c-IAP-2 function similarly to XIAP by inhibiting the distal cell death proteases, caspases-3 and -7, whereas NAIP presumably inhibits apoptosis via other targets.  相似文献   
3.
Caspase-9 can be activated without proteolytic processing   总被引:25,自引:0,他引:25  
The recombinant form of the proapoptotic caspase-9 purified following expression in Escherichia coli is processed at Asp315, but largely inactive; however, when added to cytosolic extracts of human 293 cells it is activated 2000-fold in the presence of cytochrome c and dATP. Thus, the characteristic activities of caspase-9 are context-dependent, and its activation may not recapitulate conventional caspase activation mechanisms. To explore this hypothesis we produced recombinant forms of procaspase-9 containing mutations that disabled one or both of the interdomain processing sites of the zymogen. These mutants were able to activate downstream caspases, but only in the presence of cytosolic factors. The mutant with both processing sites abolished had 10% of the activity of wild-type, and was able to support apoptosis, with equal vigor to wild-type, when transiently expressed in 293 cells. Thus caspase-9 has an unusually active zymogen that does not require proteolytic processing, but instead is dependent on cytosolic factors for expression of its activity.  相似文献   
4.
Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway   总被引:13,自引:0,他引:13  
In many mammalian cell types, engagement of the TRAIL/Apo2L death receptors DR4 and DR5 alters mitochondrial physiology, thereby promoting the release of pro-apoptotic proteins normally contained within this organelle. A contemporary view of this process is that in so-called type II cells death receptor-activated caspase-8 cleaves the Bcl-2 family member Bid, which generates a truncated Bid fragment that collaborates with Bax, another Bcl-2 relative, to promote the release of mitochondrial factors necessary for activation of executioner caspases and apoptosis. Here we show that in some type II cells caspase-2 is necessary for optimal TRAIL-mediated cleavage of Bid. Down-regulation of caspase-2 using RNA interference significantly inhibited TRAIL-induced apoptosis. Analysis of the TRAIL proteolytic cascade following gene silencing of specific pathway components revealed that caspase-2 is necessary for efficient cleavage of Bid; however, caspase-2 proteolytic processing, which occurs downstream of Bax, is not necessary for its role in Bid cleavage.  相似文献   
5.
New opportunities in mammalian functional genomics are emerging through the combination of high throughput technology and methods that allow manipulation of gene expression in living cells. Here we describe the application of an RNAi-based forward genomics approach toward understanding the biology and mechanism of TRAIL-induced apoptosis. TRAIL is a TNF superfamily member that induces selective cytotoxicity of tumor cells when bound to its cognate receptors. In addition to detecting well-characterized genes in the apoptosis pathway, we uncover several modulators including DOBI, a gene required for progression of the apoptotic signal through the intrinsic mitochondrial cell death pathway, and MIRSA, a gene that acts to limit TRAIL-induced apoptosis. Moreover, our data suggest a role for MYC and the WNT pathway in maintaining susceptibility to TRAIL. Collectively, these observations offer several insights on how TRAIL mediates the selective killing of tumor cells and demonstrate the utility of large-scale RNAi screens in mammalian cells.  相似文献   
6.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   
7.
Aging involves many alterations in circadian rhythms, including a loss of sensitivity to both photic and nonphotic time signals. This study investigated the sensitivity of young and old hamsters to the phase advancing effect of a 6-h dark pulse on the locomotor activity rhythm. Each hamster was tested four times during a period of approximately 9 mo; periods of exposure to a 14-h photoperiod were alternated with the periods of exposure to constant light (20-80 lx), during which the dark pulses were administered. There was no significant difference in the phase shifts exhibited by the young (4-10 mo) and old hamsters (19-25 mo) or in the amount of wheel running activity displayed during each dark pulse. However, young hamsters had a significantly greater propensity to exhibit split rhythms immediately after the dark pulses. These results suggest that, although aging does not reduce the sensitivity of the circadian pacemaker to this nonphotic signal, it alters one property of the pacemaker, i.e., the flexibility of the coupling of its component oscillators.  相似文献   
8.
Mitochondria trigger apoptosis by releasing caspase activators, including cytochrome c (cytC). Here we show, using a pH-sensitive green fluorescent protein (GFP), that mitochondria-dependent apoptotic stimuli (such as Bax, staurosporine and ultraviolet irradiation) induce rapid, Bcl-2-inhibitable mitochondrial alkalinization and cytosol acidification, followed by cytC release, caspase activation and mitochondrial swelling and depolarization. These events are not induced by mitochondria-independent apoptotic stimuli, such as Fas. Activation of cytosolic caspases by cytC in vitro is minimal at neutral pH, but maximal at acidic pH, indicating that mitochondria-induced acidification of the cytosol may be important for caspase activation; this finding is supported by results obtained from cells using protonophores. Cytosol acidification and cytC release are suppressed by oligomycin, a FoF1-ATPase/H +-pump inhibitor, but not by caspase inhibitors. Ectopic expression of Bax in wild-type, but not FoF1/H+-pump-deficient, yeast cells similarly results in mitochondrial matrix alkalinization, cytosol acidification and cell death. These findings indicate that mitochondria-mediated alteration of intracellular pH may be an early event that regulates caspase activation in the mitochondrial pathway for apoptosis.  相似文献   
9.
Our study was aimed at examinating whether or not the human genome encodes for previously unreported cysteine cathepsins. To this end, we used analyses of the genome sequence and mRNA expression levels. The program TBLASTN was employed to scan the draft sequence of the human genome for the 11 known cysteine cathepsins. The cathepsin-like segments in the genome were inspected, filtered, and annotated. In addition to the known cysteine cathepsins, the scan identified three pseudogenes, closely related to cathepsin L, on chromosome 10, as well as two remote homologs, tubulointerstitial protein antigen and tubulointerstitial protein antigen-related protein. No new members of the family were identified. mRNA expression profiles for 10 known human cysteine cathepsins showed varying expression levels in 46 different human tissues and cell lines. No expression of any of the three cathepsin L-like pseudogenes was found. Based on these results, it is likely that to date all human cysteine cathepsins are known.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号