排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Coral reefs are often termed underwater wonderlands due to the presence of an incredible biodiversity including numerous invertebrates and vertebrates. Among the dense population of benthic and bottom-dwelling inhabitants of the reef, many significant species remain hidden or neglected by researchers. One such example is the vermetids, a unique group of marine gastropods. The present study attempts for the first time to assess the density and identify preferred reef substrates in the Gulf of Kachchh, state of Gujarat, on the western coast of India. A total of three species of the family Vermetidae were recorded during the study and their substrate preferences identified. 相似文献
2.
3.
Dimitra Apostolidou;Pan Zhang;Devanshi Pandya;Kaden Bock;Qinglian Liu;Weitao Yang;Piotr E. Marszalek; 《Protein science : a publication of the Protein Society》2024,33(2):e4895
Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins. 相似文献
4.
Derivative of plant phenolic compound inhibits the type III secretion system of Dickeya dadantii via HrpX/HrpY two‐component signal transduction and Rsm systems
下载免费PDF全文

5.
Nardelli B Zaritskaya L Semenuk M Cho YH LaFleur DW Shah D Ullrich S Girolomoni G Albanesi C Moore PA 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(9):4822-4830
IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal. IFN-kappa was particularly effective in inhibiting inducible IL-12 release from monocytes. Unlike IFN-beta, IFN-kappa did not induce release of IFN-gamma by PBL. Expression of the IFN-kappa mRNA was observed in resting dendritic cells and monocytes, and it was up-regulated by IFN-gamma stimulation in monocytes, while IFN-beta mRNA was minimally detectable under the same conditions. Monocyte and dendritic cell expression of IFN-kappa was also confirmed in vivo in chronic lesions of psoriasis vulgaris and atopic dermatitis. Finally, biosensor-based binding kinetic analysis revealed that IFN-kappa, like IFN-beta, binds strongly to heparin (K(d): 2.1 nM), suggesting that the cytokine can be retained close to the local site of production. The pattern of cytokines induced by IFN-kappa in monocytes, coupled with the unique induction of IFN-kappa mRNA by IFN-gamma, indicates a potential role for IFN-kappa in the regulation of immune cell functions. 相似文献
6.
Gallo-Ebert C McCourt PC Donigan M Villasmil ML Chen W Pandya D Franco J Romano D Chadwick SG Gygax SE Nickels JT 《Fungal genetics and biology : FG & B》2012,49(2):101-113
The lipid transporter Arv1 regulates sterol trafficking, and glycosylphosphatidylinositol and sphingolipid biosyntheses in Saccharomyces cerevisiae. ScArv1 contains an Arv1 homology domain (AHD) that is conserved at the amino acid level in the pathogenic fungal species, Candida albicans and Candida glabrata. Here we show S. cerevisiae cells lacking Arv1 are highly susceptible to antifungal drugs. In the presence of drug, Scarv1 cells are unable to induce ERG gene expression, have an altered pleiotrophic drug response, and are defective in multi-drug resistance efflux pump expression. All phenotypes are remediated by ectopic expression of CaARV1 or CgARV1. The AHDs of these pathogenic fungi are required for specific drug tolerance, demonstrating conservation of function. In order to understand how Arv1 regulates antifungal susceptibility, we examined sterol trafficking. CaARV1/CgARV1 expression suppressed the sterol trafficking defect of Scarv1 cells. Finally, we show that C. albicansarv1/arv1 cells are avirulent using a BALB/c disseminated mouse model. We suggest that overall cell survival in response to antifungal treatment requires the lipid transporter function of Arv1. 相似文献
7.
The objective of the present studies was to investigate whether millimeter wave (MMW) therapy can increase the efficacy of cyclophosphamide (CPA), a commonly used anti-cancer drug. The effect of combined MMW-CPA treatment on melanoma growth was compared to CPA treatment alone in a murine model. MMWs were produced with a Russian made YAV-1 generator. The device produced 42.2 +/- 0.2 GHz modulated wave radiation through a 10 x 20 mm rectangular output horn. The animals, SKH-1 hairless female mice, were irradiated on the nasal area. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm2, respectively. The maximum skin surface temperature elevation measured at the end of 30 min irradiation was 1.5 degrees C. B16F10 melanoma cells (0.2 x 10(6)) were implanted subcutaneously into the left flank of mice on day 1 of the experiment. On days 4-8, CPA was administered intraperitoneally (30 mg/kg/day). MMW irradiation was applied concurrently with, prior to or following CPA administration. A significant reduction (P < .05) in tumor growth was observed with CPA treatment, but MMW irradiation did not provide additional therapeutic benefit as compared to CPA alone. Similar results were obtained when MMW irradiation was applied both prior to and following CPA treatment. 相似文献
8.
The present study was undertaken to investigate whether millimeter waves (MMWs) at 61.22 GHz can modulate the effect of cyclophosphamide (CPA), an anti-cancer drug, on the immune functions of mice. During the exposure each mouse's nose was placed in front of the center of the antenna aperture (1.5 x 1.5 cm) of MMW generator. The device produced 61.22 +/- 0.2 GHz wave radiation. Spatial peak Specific Absorption Rate (SAR) at the skin surface and spatial peak incident power density were measured as 885 +/- 100 W/kg and 31 +/- 5 mW/cm(2), respectively. Duration of the exposure was 30 min each day for 3 consecutive days. The maximum temperature elevation at the tip of the nose, measured at the end of 30 min, was 1 degrees C. CPA injection (100 mg/kg) was given intraperitoneally on the second day of exposure to MMWs. The animals were sacrificed 2, 5, and 7 days after CPA administration. MMW exposure caused upregulation in tumor necrosis factor-alpha (TNF-alpha) production in peritoneal macrophages suppressed by CPA administration. MMWs also caused a significant increase in interferon-gamma (IFN-gamma) production by splenocytes and enhanced proliferative activity of T-cells. Conversely, no changes were observed in interleukin-10 (IL-10) level and B-cell proliferation. These results suggest that MMWs accelerate the recovery process selectively through a T-cell-mediated immune response. 相似文献
9.
Nivedhitha Govindaswamy Santosh G. Gadde Lavanya Chidambara Devanshi Bhanushali Neha Anegondi Abhijit Sinha Roy 《Journal of biophotonics》2018,11(9)
Projection artifacts (PAs) affect the quantification of vascular parameters in the deep layer optical coherence tomography (OCT) angiography image. This study eliminated PA and quantified its effect on imaging. 53 eyes (30 subjects) of normal Indian subjects and 113 eyes (92 patients) of type 2 diabetes mellitus with retinopathy (DR) underwent imaging with a scan area of 3 mm × 3 mm. In this study, a normalized cross‐correlation between superficial and deep layer was used to remove PA in deep layer. Local fractal analysis was done to compute vascular parameters such as foveal avascular zone area (mm2), vessel density (%), spacing between large vessels (%) and spacing between small vessels (%). Before PA removal, vessel density for mild nonproliferative (NPDR), moderate NPDR, severe NPDR and proliferative DR were 42.56 ±1.69%, 40.69 ±0.72%, 37.34 ±0.85% and 35.61 ±1.26%, respectively. After artifact removal, vessel density was 28.9 ±1.22%, 29.9 ±0.56%, 26.19 ±0.59% and 24.02 ±0.94%, respectively. All the vascular parameters were statistically significant (P <.001) between normal and disease eyes, irrespective of superficial and deep retinal layers. Parafoveal sectoral analyses showed that temporal zone had the lowest vessel density and may undergo DR‐related changes first. The current approach enabled rapid and accurate quantitative interpretation of DR eyes, without PA. 相似文献
10.