首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The involvement of complement activation in various forms of cardiovascular disease renders it an important factor for disease progression and therapeutic intervention. The protective effect of resveratrol against cardiovascular disease via moderate red wine consumption has been established but the exact mechanisms are still under investigation. The current study utilised human coronary artery endothelial cells (HCAECs) in order to assess the extent to which the protective effect of resveratrol, at concentrations present in red wine, can be attributed to the upregulation of complement regulatory proteins through heme-oxygenase (HO)-1 induction. Resveratrol at concentrations as low as 0.001 μΜ increased HO-1 expression as well as membrane cofactor protein (MCP, CD46) and decay-accelerating factor (DAF, CD55) expression with no-effect on CD59. Silencing of HO-1 expression by HO-1 siRNAs abrogated both DAF and MCP protein expression with no effect on CD59. Resveratrol-mediated induction of DAF and MCP reduced C3b deposition following incubation of HCAECs with 10% normal human serum or normal rat serum as a source of complement. Incubation of HCAECs, with either a DAF blocking antibody or following transfection with HO-1 siRNAs, in the presence of 10% normal rat serum increased C3b deposition, indicating that both DAF and HO-1 are required for C3b reduction. These observations support a novel mechanism for the protective effect of resveratrol against cardiovascular disease and confirm the important role of HO-1 in the regulation of the complement cascade.  相似文献   
2.

Decay accelerating factor (DAF), a key complement activation control protein, is a 70 kDa membrane bound glycoprotein which controls extent of formation of the C3 and C5 convertases by accelerating their decay. Using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9) genome editing we generated a novel DAF deficient (Daf?/?) rat model. The present study describes the renal and extrarenal phenotype of this model and assesses renal response to complement-dependent injury induced by administration of a complement-fixing antibody (anti-Fx1A) against the glomerular epithelial cell (podocyte). Rats generated were healthy, viable and able to reproduce normally. Complete absence of DAF was documented in renal as well as extra-renal tissues at both protein and mRNA level compared to Daf+/+ rats. Renal histology in Daf?/? rats showed no differences regarding glomerular or tubulointerstitial pathology compared to Daf+/+ rats. Moreover, there was no difference in urine protein excretion (ratio of urine albumin to creatinine) or in serum creatinine and urea levels. In Daf?/? rats, proteinuria was significantly increased following binding of anti-Fx1A antibody to podocytes while increased C3b deposition was observed. The DAF knock-out rat model developed validates the role of this complement cascade regulator in immune-mediated podocyte injury. Given the increasing role of dysregulated complement activation in various forms of kidney disease and the fact that the rat is the preferred animal for renal pathophysiology studies, the rat DAF deficient model may serve as a useful tool to study the role of this complement activation regulator in complement-dependent forms of kidney injury.

  相似文献   
3.
In systemic hemolysis and in hematuric forms of kidney injury, the major heme scavenging protein, hemopexin (HPX), becomes depleted, and the glomerular microvasculature (glomeruli) is exposed to high concentrations of unbound heme, which, in addition to causing oxidative injury, can activate complement cascades; thus, compounding extent of injury. It is unknown whether unbound heme can also activate specific complement regulatory proteins that could defend against complement-dependent injury. Isolated rat glomeruli were incubated in media supplemented with HPX-deficient (HPX) or HPX-containing (HPX+) sera as a means of achieving different degrees of heme partitioning between incubation media and glomerular cells. Expression of heme oxygenase (HO)-1 and of the complement activation inhibitors, decay-accelerating factor (DAF), CD59, and complement receptor-related gene Y (Crry), was assessed by western blot analysis. Expression of HO-1 and of the GPI-anchored DAF and CD59 proteins increased in isolated glomeruli incubated with HPX sera with no effect on Crry expression. Exogenous heme (hemin) did not further induce DAF but increased Crry expression. HPX modulates heme-mediated induction of complement activation controllers in glomeruli. This effect could be of translational relevance in glomerular injury associated with hematuria.  相似文献   
4.
Although the protective role of HO-1 induction in various forms of kidney disease is well established, mechanisms other than heme catabolism to biliverdin, bilirubin and carbon monoxide have recently been identified. Unraveling these mechanisms requires the generation of appropriate animal models. The present study describes the generation of a HO-1 deficient Hmox1 ?/? rat model and characterizes its renal and extrarenal phenotype. Hmox1 ?/? rats had growth retardation and splenomegaly compared to their Hmox1 +/+ littermates. Focal segmental glomerulosclerosis-type lesions and interstitial inflammatory infiltrates were prominent morphologic findings and were associated with increased blood urea nitrogen, serum creatinine and albuminuria. There was no increase in iron deposition in glomeruli, tubules or interstitium. Iron deposition in spleen and liver was reduced. Electron microscopic examination of glomeruli revealed edematous podocytes with scant areas of foot process effacement but otherwise well preserved processes and slit-diaphragms. Of the filtration barrier proteins examined, β-catenin expression was markedly reduced both in glomeruli and extrarenal tissues. Since the rat is the preferred laboratory animal in experimental physiology and pathophysiology, the rat model of HO-1 deficiency may provide a novel tool for investigation of the role of this enzyme in renal function and disease.  相似文献   
5.
Some strains of the Burkholderia cepacia complex, including the ET12 lineage, have been implicated in epidemic spread amongst cystic fibrosis (CF) patients. Suppression-subtractive hybridisation was used to identify genomic regions within strain J2315 (ET12 lineage; genomovar IIIA) that were absent from a non-transmissible genomovar IIIB strain. Sequence data from 15 subtracted clones were used to interrogate the genome sequence of strain J2315 and identify genomic regions incorporating the subtracted sequences. Many of the genomic regions displayed abnormally low GC content and similarity to sequences implicated in gene transfer. The distribution of three subtracted regions amongst members of the B. cepacia complex varied. A large cluster of genes with strong sequence similarity to capsular production genes from Burkholderia mallei and other bacterial pathogens was identified. This genomic island was detected in some but not all representatives of genomovar IIIA, two out of four genomovar I strains, and one of two strains of Burkholderia multivorans, but was not detected in Burkholderia stabilis, Burkholderia vietnamiensis, genomovar VI or Burkholderia. ambifaria. The polysaccharide production gene cluster of strain J2315 carries an IS 407-like sequence within the gene similar to B. mallei wcbO that is lacking in other ET12 isolates. Genes from this cluster are expressed during exponential growth in broth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号