首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1937年   1篇
  1936年   1篇
  1919年   2篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
We conducted an experiment in a northern mixed-grass prairie at Wind Cave National Park, South Dakota, USA to evaluate the effect of defoliation frequency on aboveground net primary production (ANPP), shoot nitrogen concentration, and aboveground N yield of graminoids. ANPP was significantly reduced at weekly and biweekly defoliation frequencies, but unaffected relative to unclipped controls at monthly and bimonthly frequencies. By contrast, clipping at all frequencies increased shoot N concentration above that of controls, and this increase was greatest at monthly or more frequent defoliations. Total aboveground N yield and potential N yield to grazers were greatest at intermediate (bimonthly to biweekly) frequencies. We suggest that grazers may maximize their nutritional status in this system by periodically regrazing areas at frequencies near the approximately monthly optimum that we observed.  相似文献   
2.
3.
Agropyron smithii and Bouteloua gracilis plants from intensively grazed prairie dog colonies and from a grazing exclosure in Wind Cave National Park, South Dakota, were used to compare responses of conspecific populations with different histories of exposure to grazing and to competition for light. In separate experiments for each species, plants grown in monocultures and two-population replacement-series mixtures were used to examine effects of defoliation, frequency-dependent competition, and population on biomass and morphology. Colony and exclosure plants frequently responded differently. Defoliation more often adversely affected exclosure plants than colony plants, while interpopulation competition more often adversely affected colony plants. Defoliation frequently negated the competitive advantage of exclosure plants. Intrapopulation competition appeared to be greater among exclosure than colony plants. Our results indicate that conclusions based on studies of plants in long-term exclosures may not apply to plant populations having long histories of intensive grazing. While there were differences between species, in both, these experiments provide evidence of population differentiation, resulting in morphologically dissimilar populations which responded differently to defoliation and to inter- and intrapopulation competition.  相似文献   
4.
5.
Alba-Lynn C  Detling JK 《Oecologia》2008,157(2):269-278
Disturbances such as fire, grazing, and soil mixing by animals interact to shape vegetation in grassland ecosystems. Animal-generated disturbances are unique in that they arise from a suite of behaviors that are themselves subject to modification by external factors. The manner in which co-occurring animal taxa interact to alter vegetation is a function of their respective behaviors, which shape the characteristics (e.g., the magnitude or extent) of their disturbances. To determine whether prairie dogs (Cynomys ludovicianus) and harvester ants (Pogonomyrmex occidentalis) interactively alter vegetation structure and heterogeneity on the Colorado shortgrass steppe, we characterized the size, dispersion, and vegetation of prairie dog burrow mounds and ant nests (located on and off prairie dog colonies) and vegetation growing beyond mound and nest perimeters. Ants located on prairie dog colonies engineered significantly larger nests and disturbed nearly twice as much total soil area as their off-colony counterparts. Ant nests were overdispersed both on and off prairie dog colonies, while prairie dog mounds were randomly dispersed. Where harvester ants and prairie dogs co-occur, the overdispersed pattern of on-colony ant nests is in effect "overlaid" onto the random pattern of prairie dog mounds, resulting in a unique, aggregated pattern of soil disturbance. Ant nests on prairie dog colonies had significantly less vegetation and lower plant species diversity than did prairie dog mounds, while off-colony nests were similar to mounds. These results suggest that ant nests are more highly disturbed when located on prairie dog colonies. Beyond nests proper, ants did not appear to alter vegetation in a manner distinct from prairie dogs. As such, the interactive effects of prairie dogs and ants on vegetation arise mainly from the disturbance characteristics of mounds and nests proper.  相似文献   
6.
The relationship between vegetation cover and soil seed banks was studied in five different ungulate herbivore-prairie dog treatment combinations at three northern mixed-grass prairie sites in Badlands National Park, South Dakota. There were distinct differences in both the seed bank composition and the aboveground vegetation between the off-prairie dog colony treatments and the on-colony treatments. The three on-colony treatments were similar to each other at all three sites with vegetation dominated by the forbs Dyssodia papposa, Hedeoma spp., Sphaeralcea coccinea, Conyza canadensis, and Plantago patagonica and seed banks dominated by the forbs Verbena bracteata and Dyssodia papposa. The two off-colony treatments were also similar to each other at all three sites. Vegetation at these sites was dominated by the grasses Pascopyrum smithii, Bromus tectorum and Bouteloua gracilis and the seed banks were dominated by several grasses including Bromus tectorum, Monroa squarrosa, Panicum capillare, Sporobolus cryptandra and Stipa viridula. A total of 146 seedlings representing 21 species germinated and emerged from off-colony treatments while 3069 seedlings comprising 33 species germinated from on-colony treatments. Fifteen of the forty species found in soil seed banks were not present in the vegetation, and 57 of the 82 species represented in the vegetation were not found in the seed banks. Few dominant species typical of mixed-grass prairie vegetation germinated and emerged from seed banks collected from prairie dog colony treatments suggesting that removal of prairie dogs will not result in the rapid reestablishment of representative mixed-grass prairie unless steps are taken to restore the soil seed bank.  相似文献   
7.
Grazing-related, intraspecific, morphological variation was studied in four North American grasses (Bouteloua gracilis, Agropyron smithii, Schizachyrium scoparium, and Andropogon gerardii) from eight locales in Wind Cave National Park, South Dakota: three locales currently occupied and heavily grazed by prairie dogs (Cynomys ludovicianus), colonized (since settlement) for 2–100 years, where native ungulates concentrate grazing activities; an extinct colony locale from which prairie dogs were removed 30 years previously, moderately to lightly grazed by ungulates; two noncolony locales, moderately to lightly grazed by ungulates; and two locales from within a 50-year-old grazing exclosure, with no known history of grazing by prairie dogs nor any recent grazing by ungulates. Data were collected both in situ and in common environments.Active-colony plants were more frequently and more heavily grazed than those at other grazed locales. In situ, plants from heavily grazed populations were smaller and more prostrate than those from populations with little or no grazing (including the extinct colony) and interpopulation variation corresponded to current grazer use. After several growing seasons in common environments, there were still significant interpopulation differences; however, variation often corresponded with grazing history. Although differences between active-colony and noncolony plants were somewhat reduced (indicating some phenotypic plasticity), active-colony plants were still smaller and more prostrate. However, extinct-colony plants more closely resembled active-colony plants than noncolony plants. Morphological variation among these populations is the result of more than simple grazer use; historical factors and the dynamic nature of the grazing regimes are also contributing factors.Abbreviations A. gerardii Andropogon gerardii - A. smithii Agropyron smithii - BFC Bison Flats colony locale - BFN noncolony locale at Bison Flats - B. gracilis Bouteloua gracilis - EXT Upper Highland extinct-colony locale - GDN common garden - GH greenhouse - NEW new satellite colony locale - PVC Pringle Valley colony locale - PVN noncolony locale in Pringle Valley - S. scoparium Schizachyrium scoparium - WCNP Wind Cave National Park, South Dakota, USA - XFN exclosure locale just inside exclosure fence from BFN - XHQ exclosure locale near headquarters buildings  相似文献   
8.
Summary Laboratory experiments were performed to determine whether regrowth of blue grama was affected by potential growth-promoting substances in saliva of North American bison. We observed no statistically significant effects of foliar application of whole bison saliva on net photosynthesis (PN), root respiration (RR), allocation patterns of photosynthetically fixed 14C, or regrowth rates over a 10-day period following clipping to various heights. In a 10-week experiment, there were no significant effects of saliva on leaf, crown or root growth or tiller production in plants clipped to heights of 6, 4 or 2 cm above crowns. Similarly, nitrogen-stressed plants failed to show significant changes in growth rates or tillering in response to saliva over a 3-week period. Clipped blue grama plants did exhibit significant compensatory growth responses, including higher PN rates from 3–10 days following clipping and allocation of a higher proportion of current photosynthate to synthesis of new leaf tissue with increasing severity of defoliation. Nevertheless, unclipped plants invariably outproduced clipped plants following defoliation.  相似文献   
9.
A prairie dog (Cynomys ludovicianus) colony with a known history of habitation was studied to quantify the effects of herbivory on plant species composition, dominance, stature and diversity in a North American mixedgrass prairie. Gradient analysis was used to quantify the relationship between plant community structure, prairie dog density, burrow density and habitation history and to document community-level responses of plants subjected to heavy grazing pressure. The results quantify the type, rate and extent of change which plant populations and communities may undergo in response to the differential grazing of plants variously tolerant of defoliation.Detrended correspondence analysis indicated that 69% of the between-sample floristic variance on the site was attributable to prairie dog habitation. Perennial grasses were rapidly displaced from the site within 3 yr of colonization and were replaced by annual forbs. The net result was an increase in species richness and diversity on the prairie dog colony. Within the colony, however, the number of species was more a function of stand size than colonization history.Significant decreases in canopy stature after 2 yr of habitation resulted from replacement of mid-height grass species by shortgrass species and forbs. In addition, there was a shift from tall growth forms of off-colony species to dwarf growth forms of the same species on the colony. Decreases in litter and increases in bare soil cover were substantial during the first 2 yr of habitation but changed little thereafter.Abbreviations WCC Wind Cave Canyon - DCA Detrended Correspondence Analysis  相似文献   
10.
Summary Net photosynthesis (PN), root respiration (RR), and regrowth of Bouteloua gracilis (H.B.K.) Lag. were examined in the laboratory over a 10-day period following clipping to a 4-cm height to simulate grazing by large herbivores. Net photosynthesis rates of tissue remaining immediately following defoliation were only about 40% as great as preclipping rates. Three days after clipping, PN rates of defoliated plants had increased to values about 21% greater (per unit leaf area) than those of unclipped controls and remained at that level through Day 10. No statistically significant changes in RR occurred following defoliation. Biomass of unclipped plants nearly doubled during the 10-day study period, while that of defoliated plants increased 67%. Over half the new growth of defoliated plants was allocated to new leaf blades and only 18% to new roots, while only 33% of the new growth of control plants was allocated to new leaf blades but 29% went to new roots. As a consequence of increased PN rates and increased carbon allocation to synthesis of additional photosynthetic tissue following defoliation, net CO2 uptake per plant increased from 9% to 80% of that of the controls from Day 0 through Day 10.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号