首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   63篇
  687篇
  2022年   8篇
  2021年   19篇
  2020年   10篇
  2019年   10篇
  2018年   5篇
  2017年   17篇
  2016年   20篇
  2015年   34篇
  2014年   35篇
  2013年   38篇
  2012年   55篇
  2011年   53篇
  2010年   34篇
  2009年   15篇
  2008年   39篇
  2007年   32篇
  2006年   28篇
  2005年   23篇
  2004年   20篇
  2003年   25篇
  2002年   29篇
  2001年   7篇
  2000年   9篇
  1999年   8篇
  1998年   9篇
  1997年   5篇
  1995年   4篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   5篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1982年   3篇
  1977年   3篇
  1975年   5篇
  1974年   2篇
  1971年   2篇
  1969年   3篇
  1968年   4篇
  1967年   2篇
  1966年   4篇
  1965年   3篇
  1964年   2篇
  1963年   4篇
  1961年   4篇
  1956年   2篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
1.
2.
3.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   
4.
The survival of Salmonella typhimurium after a standard heat challenge at 55°C for 25 min increased by several orders of magnitude when cells grown at 37°C were pre-incubated at 42°, 45° or 48°C before heating at the higher temperature. Heat resistance increased rapidly after the temperature shift, reaching near maximum levels within 30 min. Elevated heat resistance persisted for at least 10 h. Preincubation of cells at 48°C for 30 min increased their resistance to subsequent heating at 50°, 52°, 55°, 57° or 59°C. Survival curves of resistant cells were curvilinear. Estimated times for a '7D' inactivation increased by 2.6- to 20-fold compared with cells not pre-incubated before heat challenge.  相似文献   
5.
Summary The most widely used technique of leaf water potential measurements is with the Scholander pressure chamber. Representative leaf water potential values require many determinations on individual leaves and this can be time consuming in large fields or experiments with multiple treatments. This paper describes a method of obtaining a mean value more rapidly, by using two leaves in the pressure chamber at the same time, but recording the end point of each leaf separately.  相似文献   
6.
A study has been made of the annual incidence of asthma in Brisbane for 7 years in relation to the weather. The element most closely associated with asthma was rainfall. There was a minor, independent association with temperature. The association of asthma with rain and warmth, which promote the growth of vegetation, supports the suggestion arising from the seasonal study of asthma that vegetation may be an important source of allergens.
Zusammenfassung Die Beziehung zwischen dem Wetter und der Häufigkeit von Asthma in Brisbane während 7 Jahren wurde untersucht. Unter den meteorologischen Elementen ergab sich die engste Beziehung zwischen Asthmahäufigkeit und Niederschlägen. Eine geringere, unabhängige Beziehung bestand mit der Temperatur. Die Verbindung von Asthma mit Niederschlägen und Wärme stützt die Vermutung, dass die Vegetation eine wichtige Allergenquelle ist.

Resume On a étudié durant 7 années la relation existant entre le temps et la fréquence des crises d'asthme à Brisbane. Parmi les éléments météorologiques examinés, celui qui donna la plus étroite relation est la précipitation.Une relation indépendante, moindre il est vrai, existe également avec la température.L'étroite relation entre les crises d'asthme d'une part, les précipitations et la chaleur d'autre part renforce l'hypothèse que la végétation est la principale source des principes allergènes.
  相似文献   
7.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   
8.
Chloramphenicol acetyltransferase (CAT) was used to assess the feasibility of study of specific proton resonances in an enzyme of overall molecular mass 75,000, [ring 2-13C]Histidine was selectively incorporated into the type III chloramphenicol acetyltransferase (CATIII) using a histidine auxotroph of E. coli. Heteronuclear multiple and single quantum experiments were used to select the C2 protons in the histidyl imidazole ring. One- and two-dimensional spectra revealed six signals out of a total of seven histidine residues in CATIII. pH titration, chemical modification and ligand binding were used to demonstrate that the signal from H195, the histidine at the active site, is not among those observed. Nevertheless, this work demonstrates that selective isotopic enrichment and multiple quantum coherence techniques can be used to distinguish proton resonances in a protein of high molecular mass.  相似文献   
9.
We have used 1H nuclear magnetic resonance spectroscopy to determine the solution structures of two small (61 and 64 residue) immunoglobulin G (IgG)-binding domains from protein G, a cell-surface protein from Streptococcus strain G148. The two domains differ in sequence by four amino acid substitutions, and differ in their affinity for some subclasses of IgG. The structure of domain II was determined using a total of 478 distance restraints, 31 phi and 9 chi 1 dihedral angle restraints; that of domain III was determined using a total of 445 distance restraints, 31 phi and 9 chi 1 dihedral angle restraints. A protocol which involved distance geometry, simulated annealing and restrained molecular dynamics was used to determine ensembles of 40 structures consistent with these restraints. The structures are found to consist of an alpha-helix packed against a four-stranded antiparallel-parallel-antiparallel beta-sheet. The structures of the two domains are compared to each other and to the reported structure of a similar domain from a protein G from a different strain of Streptococcus. We conclude that the difference in affinity of domains II and III for IgG is due to local changes in amino acid side-chains, rather than a more extensive change in conformation, suggesting that one or more of the residues which differ between them are directly involved in interaction with IgG.  相似文献   
10.
Paddy field, being a man-made wetland, is recognized as one of the major sources of global methane (CH4) emission. Since China has the second-largest area of rice cultivation in the world, it is important to develop valid and reliable strategies to reduce CH4 emission and sustain rice productivity in Chinese paddy fields. In this study, we applied steel slag fertilizer, a by-product of steel industry with a high concentration of active iron (Fe), at rates of 0, 2, 4, and 8 Mg ha?1 in subtropical rice (Oryza sativa L.) paddy fields in China to assess the effect of steel slag amendment on CH4 emissions as well as rice growth and yield characteristics. Results showed that the Fe concentrations in paddy soils significantly increased with the application levels of steel slag fertilizer. Steel slag amendment in paddy fields largely reduced the CH4 production rate, resulting in a decrease in the overall CH4 emission rate. In response to the applications of steel slag at a rate of 2, 4 and 8 Mg ha?1, total CH4 emission during rice cultivation decreased by 26.6, 43.3 and 49.3 %, respectively. Furthermore, steel slag amendment had a significant, positive effect on the rice grain yield and the percentage of ripened grain, most probably due to the increased availability of inorganic nutrients such as silicate and manganese. Our results suggest that steel slag can be an effective soil amendment for reducing CH4 emissions as well as increasing rice productivity in subtropical paddy fields in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号