首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   58篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   8篇
  2014年   9篇
  2013年   6篇
  2012年   13篇
  2011年   9篇
  2010年   9篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   13篇
  2000年   4篇
  1999年   10篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   8篇
  1980年   1篇
  1979年   11篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   6篇
  1973年   1篇
  1969年   1篇
排序方式: 共有254条查询结果,搜索用时 15 毫秒
1.
Reovirus is a nonenveloped mammalian virus that provides a useful model system for studies of viral infections in the young. Following internalization into host cells, the outermost capsid of reovirus virions is removed by endosomal cathepsin proteases. Determinants of capsid disassembly kinetics reside in the viral σ3 protein. However, the contribution of capsid stability to reovirus-induced disease is unknown. In this study, we found that mice inoculated intramuscularly with a serotype 3 reovirus containing σ3-Y354H, a mutation that reduces viral capsid stability, succumbed at a higher rate than those infected with wild-type virus. At early times after inoculation, σ3-Y354H virus reached higher titers than wild-type virus at several sites within the host. Animals inoculated perorally with a serotype 1 reassortant reovirus containing σ3-Y354H developed exaggerated myocarditis accompanied by elaboration of pro-inflammatory cytokines. Surprisingly, unchallenged littermates of mice infected with σ3-Y354H virus displayed higher titers in the intestine, heart, and brain than littermates of mice inoculated with wild-type virus. Together, these findings suggest that diminished capsid stability enhances reovirus replication, dissemination, lethality, and host-to-host spread, establishing a new virulence determinant for nonenveloped viruses.  相似文献   
2.
3.
4.
5.
6.
Reoviruses isolated from persistently infected cultures (PI viruses) can grow in the presence of ammonium chloride, a weak base that blocks acid-dependent proteolysis of viral outer-capsid proteins during viral entry into cells. We used reassortant viruses isolated from crosses of wild-type (wt) reovirus strain, type 1 Lang, and three independent PI viruses, L/C, PI 2A1, and PI 3-1, to identify viral genes that segregate with the capacity of PI viruses to grow in cells treated with ammonium chloride. Growth of reassortant viruses in ammonium chloride-treated cells segregated with the S1 gene of L/C and the S4 gene of PI 2A1 and PI 3-1. The S1 gene encodes viral attachment protein sigma1, and the S4 gene encodes outer-capsid protein sigma3. To identify mutations in sigma3 selected during persistent reovirus infection, we determined the S4 gene nucleotide sequences of L/C, PI 2A1, PI 3-1, and four additional PI viruses. The deduced amino acid sequences of sigma3 protein of six of these PI viruses contained a tyrosine-to-histidine substitution at residue 354. To determine whether mutations selected during persistent infection alter cleavage of the viral outer capsid, the fate of viral structural proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment of virions of wt and PI viruses with chymotrypsin in vitro. Proteolysis of PI virus outer-capsid proteins sigma3 and mu1C occurred with faster kinetics than proteolysis of wt virus outer-capsid proteins. These results demonstrate that mutations in either the S1 or S4 gene alter acid-dependent disassembly of the reovirus outer capsid and suggest that increased efficiency of proteolysis of viral outer-capsid proteins is important for maintenance of persistent reovirus infections of cultured cells.  相似文献   
7.
The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.  相似文献   
8.
Reovirus serotype 3 strains infect neurons within specific regions of the neonatal mouse brain and produce a lethal meningoencephalitis. Viral replication and pathology colocalize and have a predilection for the cortex, hippocampus, and thalamus. We have shown previously that infection of cultured fibroblasts and epithelial cells with reovirus type 3 Dearing (T3D) and other type 3 reovirus strains results in apoptotic cell death, suggesting that apoptosis is a mechanism of cell death in vivo. We now report that T3D induces apoptosis in infected mouse brain tissue. To determine whether reovirus induces apoptosis in neural tissues, newborn mice were inoculated intracerebrally with T3D, and at various times after inoculation, brain tissue was assayed for viral antigen by immunostaining and apoptosis was identified by DNA oligonucleosomal laddering and in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Cells were also stained with cresyl violet to detect morphological changes characteristic of apoptosis, including chromatin condensation and cell shrinkage. DNA laddering was detected in T3D- but not in mock-infected brain tissue. Apoptotic cells were restricted to the same regions of the brain in which infected cells and tissue damage were observed. These findings suggest that virus-induced apoptosis is a mechanism of cell death, tissue injury, and mortality in reovirus-infected mice. The correlation between apoptosis and pathogenesis in vivo identifies apoptosis as a potential target for molecular and pharmacological strategies designed to curtail or prevent diseases resulting from induction of this cell death pathway.  相似文献   
9.
In this study, we investigated the relationship between reovirus-induced apoptosis and viral growth. Madin-Darby canine kidney (MDCK) epithelial cells infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D) were found to undergo apoptosis, and T3D induced apoptosis of MDCK cells to a substantially greater extent than T1L. By using T1L x T3D reassortant viruses, we found that differences in the capacities of these strains to induce apoptosis are determined by the viral S1 and M2 gene segments. These genes encode viral outer-capsid proteins that play important roles in viral entry into cells. T1L grew significantly better in MDCK cells than T3D, and these differences in growth segregated with the viral L1 and M1 gene segments. The L1 and M1 genes encode viral core proteins involved in viral RNA synthesis. Bcl-2 overexpression in MDCK cells inhibited reovirus-induced apoptosis but did not substantially affect reovirus growth. These findings indicate that differences in the capacities of reovirus strains to induce apoptosis and grow in MDCK cells are determined by different viral genes and that premature cell death by apoptosis does not limit reovirus growth in MDCK cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号