首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6369篇
  免费   669篇
  2022年   45篇
  2021年   83篇
  2020年   53篇
  2019年   83篇
  2018年   100篇
  2017年   90篇
  2016年   169篇
  2015年   269篇
  2014年   254篇
  2013年   304篇
  2012年   430篇
  2011年   407篇
  2010年   239篇
  2009年   214篇
  2008年   330篇
  2007年   325篇
  2006年   302篇
  2005年   276篇
  2004年   317篇
  2003年   248篇
  2002年   254篇
  2001年   144篇
  2000年   117篇
  1999年   129篇
  1998年   94篇
  1997年   70篇
  1996年   63篇
  1995年   60篇
  1994年   44篇
  1993年   48篇
  1992年   76篇
  1991年   89篇
  1990年   85篇
  1989年   65篇
  1988年   63篇
  1987年   74篇
  1986年   80篇
  1985年   71篇
  1984年   41篇
  1983年   42篇
  1982年   44篇
  1981年   48篇
  1980年   47篇
  1979年   63篇
  1978年   43篇
  1977年   28篇
  1976年   41篇
  1974年   34篇
  1973年   37篇
  1966年   31篇
排序方式: 共有7038条查询结果,搜索用时 15 毫秒
1.
For decades, the bio-duck sound has been recorded in the Southern Ocean, but the animal producing it has remained a mystery. Heard mainly during austral winter in the Southern Ocean, this ubiquitous sound has been recorded in Antarctic waters and contemporaneously off the Australian west coast. Here, we present conclusive evidence that the bio-duck sound is produced by Antarctic minke whales (Balaenoptera bonaerensis). We analysed data from multi-sensor acoustic recording tags that included intense bio-duck sounds as well as singular downsweeps that have previously been attributed to this species. This finding allows the interpretation of a wealth of long-term acoustic recordings for this previously acoustically concealed species, which will improve our understanding of the distribution, abundance and behaviour of Antarctic minke whales. This is critical information for a species that inhabits a difficult to access sea-ice environment that is changing rapidly in some regions and has been the subject of contentious lethal sampling efforts and ongoing international legal action.  相似文献   
2.
3.
4.
5.
The nadA and pnuC loci of S. typhimurium were cloned and found to reside within a 2.2-kilobase region. Two-dimensional O'Farrell gel electrophoresis of the proteins produced after chloramphenicol amplification and subsequent release from chloramphenicol inhibition revealed NadA and PnuC to be 43,000- and 25,000-molecular-weight proteins, respectively. The data indicated that nadA and pnuC represent two distinct genes.  相似文献   
6.
7.
Atherogenesis is potentiated by metabolic abnormalities that contribute to a heightened state of systemic inflammation resulting in endothelial dysfunction. However, early functional changes in endothelium that signify an individual''s level of risk are not directly assessed clinically to help guide therapeutic strategy. Moreover, the regulation of inflammation by local hemodynamics contributes to the non-random spatial distribution of atherosclerosis, but the mechanisms are difficult to delineate in vivo. We describe a lab-on-a-chip based approach to quantitatively assay metabolic perturbation of inflammatory events in human endothelial cells (EC) and monocytes under precise flow conditions. Standard methods of soft lithography are used to microfabricate vascular mimetic microfluidic chambers (VMMC), which are bound directly to cultured EC monolayers.1 These devices have the advantage of using small volumes of reagents while providing a platform for directly imaging the inflammatory events at the membrane of EC exposed to a well-defined shear field. We have successfully applied these devices to investigate cytokine-,2 lipid-3, 4 and RAGE-induced5 inflammation in human aortic EC (HAEC). Here we document the use of the VMMC to assay monocytic cell (THP-1) rolling and arrest on HAEC monolayers that are conditioned under differential shear characteristics and activated by the inflammatory cytokine TNF-α. Studies such as these are providing mechanistic insight into atherosusceptibility under metabolic risk factors.  相似文献   
8.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   
9.
R J Kraus  S J Foster  H E Ganther 《Biochemistry》1983,22(25):5853-5858
A convenient procedure was developed for identifying selenocysteine in selenoproteins by mass spectroscopy, based on formation of the 2,4-dinitrophenyl (DNP) derivative. Pure ovine erythrocyte glutathione peroxidase was reduced with sodium borohydride and reacted with 1-fluoro-2,4-dinitrobenzene at neutral pH under anaerobic conditions in 4 M guanidine. The inactivated enzyme was hydrolyzed with 6 N HCl for 20 h at 110 degrees C under anaerobic conditions. Following extraction of the hydrolysate with benzene, Se-(2,4-dinitrophenyl)selenocysteine in the aqueous phase was separated from non-DNP-amino acids by gel-filtration chromatography and then separated from other water-soluble DNP-amino acids by reversed-phase high-performance liquid chromatography. The Se-(2,4-dinitrophenyl)selenocysteine was converted to Se-methyl-N-(2,4-dinitrophenyl)selenocysteine by the addition of sodium barbital to induce an intramolecular Se leads to N shift (Smiles rearrangement) under anaerobic conditions, in the presence of methyl iodide to trap the liberated selenol group. Following esterification of the product's carboxyl group with methanol and hydrochloric acid, it was subjected to direct probe mass spectroscopy and identified as the methyl ester of Se-methyl-N-(2,4-dinitrophenyl)selenocysteine. This procedure allows selenocysteine to be isolated quite easily as a readily identifiable derivative and has permitted the first identification of a seleno amino acid in a protein by mass spectroscopy.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号