首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
We report the first isolation and sequencing of genomic BAC clones containing the marsupial milk protein genes Whey Acidic Protein (WAP) and Early Lactation Protein (ELP). The stripe-faced dunnart WAPgene sequence contained five exons, the middle three of which code for the WAPmotifs and four disulphide core domains which characterize WAP. The dunnart ELPgene sequence contained three exons encoding a protein with a Kunitz motif common to serine protease inhibitors. Fluorescence in situ hybridization located the WAPgene to chromosome 1p in the stripe-faced dunnart, and the ELPgene to 2q. Northern blot analysis of lactating mammary tissue of the closely related fat-tailed dunnart has shown asynchronous expression of these milk protein genes. ELPwas expressed at only the earlier phase of lactation and WAPonly at the later phase of lactation, in contrast to beta-lactoglobulin (BLG) and alpha-lactalbumin (ALA) genes, which were expressed in both phases of lactation. This asynchronous expression during the lactation cycle in the fat-tailed dunnart is similar to other marsupials and it probably represents a pattern that is ancestral to Australian marsupials.  相似文献   
2.
SUMMARY Whey acidic protein (WAP) belongs to a family of four disulfide core (4-DSC) proteins rich in cysteine residues and is the principal whey protein found in milk of a number of mammalian species. Eutherian WAPs have two 4-DSC domains, whereas marsupial WAPs are characterized by the presence of an additional domain at the amino terminus. Structural and expression differences between marsupial and eutherian WAPs have presented challenges to identifying physiological functions of the WAP protein. We have characterized the genomic structure of tammar WAP (tWAP) gene, identified its chromosomal localization and investigated the potential function of tWAP. We have demonstrated that tWAP and domain III (DIII) of the protein alone stimulate proliferation of a mouse mammary epithelial cell line (HC11) and primary cultures of tammar mammary epithelial cells (Wall-MEC), whereas deletion of DIII from tWAP abolishes this proliferative effect. However, tWAP does not induce proliferation of human embryonic kidney (HEK293) cells. DNA synthesis and expression of cyclin D1 and cyclin-dependent kinase-4 genes were significantly up-regulated when Wall-MEC and HC11 cells were grown in the presence of either tWAP or DIII. These data suggest that DIII is the functional domain of the tWAP protein and that evolutionary pressure has led to the loss of this domain in eutherians, most likely as a consequence of adopting a reproductive strategy that relies on greater investment in development of the newborn during pregnancy.  相似文献   
3.
Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene.  相似文献   
4.
Cell-cell and extracellular matrix adhesions play important roles in the progression of cancer. We investigated the involvement of the inflammatory mediator leukotriene D4 (LTD4) in the regulation of cell-matrix adhesion of colon cancer (Caco-2) cells. We observed that LTD4 acted via its CysLT1 receptor in these cells to induce increased adhesion to collagen I. LTD4 also enhanced the activation and expression of alpha2beta1-integrins on the cell surface, which we found to be responsible for mediating the increased adhesion to collagen I. LTD4 simultaneously augmented expression of the prostaglandin-generating enzyme cyclooxygenase-2 (COX-2) and increased prostaglandin E2 (PGE2) production in Caco-2 cells. The adhesive capacity of the Caco-2 cells was reduced by specific inhibition of COX-2 and was subsequently restored by PGE2, but not by LTD4. A selective PGE2 receptor antagonist abolished the increased adhesion and the augmented alpha2beta1-integrin expression induced by both PGE2 and LTD4. Summarizing, the inflammatory mediator LTD4 regulates the adhesive properties and migration of the Caco-2 cell line by upregulating COX-2 and stimulating PGE2-induced expression of alpha2beta1-integrins. This suggests that inflammatory mediators such as LTD4 can be involved in the dissemination and survival of colon cancer cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号