首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   6篇
  212篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   11篇
  2014年   2篇
  2013年   22篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   11篇
  2007年   12篇
  2006年   8篇
  2005年   16篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1960年   1篇
  1957年   1篇
  1899年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
1.
2.
Summary The degradation of benzaldehyde in methanogenic granular sludge was investigated in batch and in upflow anaerobic sludge blanket (UASB) reactors. The effect due to the presence of co-substrates, such as H2, sodium butyrate and sucrose, was studied using formaldehyde as a reference compound. The additional substrates enhanced the activity of benzaldehyde- and formaldehyde-degrading microorganisms (ACTbdm and ACTfdm, respectiveky) and increased the transient production of benzyl alcohol and methanol. As a consequence, the concentrations of benzaldehyde and formaldehyde that caused 50% inhibition of the methanogenic activity (50% ICm) on sucrose were 3133 and 254 mg chemical oxygen demand (COD)/l respectively, three times higher than the literature data values on acetate. Experiments performed in UASB reactors on benzaldehyde showed that the replacement of volatile fatty acids with sucrose as co-substrate improved the treatment capacity of the system from 0.73 to 4.36 kg COD benzaldehyde·m–13·day–1. Correspondence to: O. Todini  相似文献   
3.
Abstract

Researches on ultrastructure of Avena coleoptile. 3. The sieve elements. — A study on the ultrastructural organization of the mature sieve elements of Avena coleoptile has been carried out. Data suggest that functional phloem tubes are alive and remain alive until they are working. Judging on morphological basis, the metabolic activity of sieve elements should be of peculiar type and low in comparison to that of the companion cells. In fact the cytoplasm is located in a narrow parietal strand, mitochondria, Golgi apparatus and endoplasmic reticulum are present, but they appear very modified; plastids and nucleus are absent. The cytoplasm is bounded externally by a normal plasmalemma, whilst the vacuole has no visible limits: a tonoplast is, therefore not identifiable.

The strands connecting the superimposed sieve elements with one another through the sieve plate result to be made by a double membrane system very similar to the endoplasmic reticulum, which we believe to realize cytoplasmic continuity between phloem tubes.

The data reported are more favorable to the existence in the sieve tubes of an active mechanism of translocation of organic solutes than a passive mass-flow.

The collaboration of companion cells in the translocation mechanism has been discussed.  相似文献   
4.
In order to evaluate the resistance to salinity as a factor enhancing freshwater invasiveness, we assessed the tolerance of the mussel Limnoperna fortunei to salinity conditions mimicking changes in an estuary. We tested mussel mortality in 30-day exposures to constant and fluctuating salinities at different temperatures in the laboratory. Test conditions simulated different seasons of the year and locations with increasing influence of marine waters in Río de la Plata, Argentina. Significant mortality (31 % after 30 days) was observed at a constant salinity of 2 ‰, increasing to 45 and 57 % at 5 and 10 ‰, respectively. In contrast, considerably greater tolerances were observed when conditions in the experimental chamber fluctuated between salt water and fresh water. No significant mortality was observed in mussels exposed to a salinity cycle with abrupt salinity changes ranging 1–23 ‰ (mean 2.68 ‰) over a month. Tolerance to this type of regime was unaffected by different temperatures within ambient ranges. Tests at constant salinity underestimate the tolerance of this and probably other freshwater nonindigenous species (NIS) to short-term saltwater exposures. Estuarine ports account for ca. 2/3 of non-marine ports globally, thus constituting donor and recipient hotspots for the spread of NIS propagules into continental aquatic ecosystems via shipping vectors. The tolerance of L. fortunei to estuarine conditions likely contributes to the species’ remarkable invasive success. These results highlight the need to determine causes of invasiveness and to study NIS traits not alone but in combination with transport network properties.  相似文献   
5.
Signaling through the T cell receptor (TCR) initiates adaptive immunity and its perturbation may results in autoimmunity. The plasma membrane scaffolding protein LAT acts as a central organizer of the TCR signaling machinery to activate many functional pathways. LAT-deficient mice develop an autoimmune syndrome but the mechanism of this pathology is unknown. In this work we have compared global dynamics of TCR signaling by MS-based quantitative phosphoproteomics in LAT-sufficient and LAT-defective Jurkat T cells. Surprisingly, we found that many TCR-induced phosphorylation events persist in the absence of LAT, despite ERK and PLCγ1 phosphorylation being repressed. Most importantly, the absence of LAT resulted in augmented and persistent tyrosine phosphorylation of CD3ζ and ZAP70. This indicates that LAT signaling hub is also implicated in negative feedback signals to modulate upstream phosphorylation events. Phosphorylation kinetics data resulting from this investigation is documented in a database (phosphoTCR) accessible online. The MS data have been deposited to the ProteomeXchange with identifier PXD000341.  相似文献   
6.
The ability of the freshwater bivalve Limnoperna fortunei to voluntarily detach from the substratum, crawl and reattach as a function of illumination, temperature, substratum orientation, and mussel size was investigated. Thirty-two per cent of the 879 experimental animals detached and reattached elsewhere at least once during five- to eight-day experiments. The proportions of mobile mussels were significantly higher in permanent darkness than under permanent illumination. Displacement distances were also higher in darkness, but statistical differences with illuminated individuals were inconclusive. No evidence of circadian rhythms was detected. Mobile mussels were often significantly smaller than non-mobile individuals. It was not possible to detect the effect of water temperature (22°C and 31°C), or substratum orientation (topside and underside) on mussel mobility, but because the power of the statistical tests was low, future experiments are needed to confirm this result. The ability of mussels to voluntarily detach and reattach elsewhere has important implications for biofouling control.  相似文献   
7.
8.
Heparin, a naturally occurring glycosaminoglycan, has been found to have antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. To elucidate the mechanistic basis for the antiviral activity of heparin, we investigated the binding of heparin to the SARS-CoV-2 spike glycoprotein by means of sliding window docking, molecular dynamics simulations, and biochemical assays. Our simulations show that heparin binds at long, positively charged patches on the spike glycoprotein, thereby masking basic residues of both the receptor-binding domain (RBD) and the multifunctional S1/S2 site. Biochemical experiments corroborated the simulation results, showing that heparin inhibits the furin-mediated cleavage of spike by binding to the S1/S2 site. Our simulations showed that heparin can act on the hinge region responsible for motion of the RBD between the inactive closed and active open conformations of the spike glycoprotein. In simulations of the closed spike homotrimer, heparin binds the RBD and the N-terminal domain of two adjacent spike subunits and hinders opening. In simulations of open spike conformations, heparin induces stabilization of the hinge region and a change in RBD motion. Our results indicate that heparin can inhibit SARS-CoV-2 infection by three mechanisms: by allosterically hindering binding to the host cell receptor, by directly competing with binding to host heparan sulfate proteoglycan coreceptors, and by preventing spike cleavage by furin. Furthermore, these simulations provide insights into how host heparan sulfate proteoglycans can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.  相似文献   
9.
10.
The development of targeted molecular therapies has provided remarkable advances into the treatment of human cancers. However, in most tumors the selective pressure triggered by anticancer agents encourages cancer cells to acquire resistance mechanisms. The generation of new rationally designed targeting agents acting on the oncogenic path(s) at multiple levels is a promising approach for molecular therapies. 2-phenylimidazo[2,1-b]benzothiazole derivatives have been highlighted for their properties of targeting oncogenic Met receptor tyrosine kinase (RTK) signaling. In this study, we evaluated the mechanism of action of one of the most active imidazo[2,1-b]benzothiazol-2-ylphenyl moiety-based agents, Triflorcas, on a panel of cancer cells with distinct features. We show that Triflorcas impairs in vitro and in vivo tumorigenesis of cancer cells carrying Met mutations. Moreover, Triflorcas hampers survival and anchorage-independent growth of cancer cells characterized by “RTK swapping” by interfering with PDGFRβ phosphorylation. A restrained effect of Triflorcas on metabolic genes correlates with the absence of major side effects in vivo. Mechanistically, in addition to targeting Met, Triflorcas alters phosphorylation levels of the PI3K-Akt pathway, mediating oncogenic dependency to Met, in addition to Retinoblastoma and nucleophosmin/B23, resulting in altered cell cycle progression and mitotic failure. Our findings show how the unusual binding plasticity of the Met active site towards structurally different inhibitors can be exploited to generate drugs able to target Met oncogenic dependency at distinct levels. Moreover, the disease-oriented NCI Anticancer Drug Screen revealed that Triflorcas elicits a unique profile of growth inhibitory-responses on cancer cell lines, indicating a novel mechanism of drug action. The anti-tumor activity elicited by 2-phenylimidazo[2,1-b]benzothiazole derivatives through combined inhibition of distinct effectors in cancer cells reveal them to be promising anticancer agents for further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号