首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  14篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2004年   2篇
  1980年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
As many chemotherapy regimens induce follicular depletion, fertility preservation became a major concern in young cancer patients. By maintaining follicles at the resting stage, gonadotropin-releasing hormone analogues (GnRHa) were proposed as an ovarian-protective option during chemotherapy. However, their efficacy and mechanisms of action remain to be elucidated. Mice were dosed with cyclophosphamide (Cy, 100–500mg/kg i.p) to quantify follicular depletion and evaluate apoptosis at different times. We observed a dose-dependent depletion of the follicular reserve within 24 hours after Cy injection with a mean follicular loss of 45% at the dose of 200mg/kg. Apoptosis occurs in the granulosa cells of growing follicles within 12 hours after Cy treatment, while no apoptosis was detected in resting follicles suggesting that chemotherapy acutely affects both resting and growing follicles through different mechanisms. We further tested the ability of both GnRH agonist and antagonist to inhibit oestrus cycles, follicular growth and FSH secretion in mice and to protect ovarian reserve against chemotherapy. Although GnRHa were efficient to disrupt oestrus cycles, they failed to inhibit follicular development, irrespective of the doses and injection sites (sc or im). Around 20% of healthy growing follicles were still observed during GnRHa treatment and serum FSH levels were not reduced either by antagonist or agonist. GnRHa had no effect on Cy-induced follicular damages. Thus, we showed that GnRHa were not as efficient at inhibiting the pituitary-gonadal axis in mice as in human. Furthermore, the acute depletion of primordial follicles observed after chemotherapy does not support the hypothesis that the ovary may be protected by gonadotropin suppression.  相似文献   
4.
Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing.In the last few years, autotrophic nitrogen removal via partial nitritation and anoxic ammonium oxidation (anammox) has evolved from lab- to full-scale treatment of nitrogenous wastewaters with a low biodegradable organic compound content, and this evolution has been driven mainly by a significant decrease in the operational costs compared to the costs of conventional nitrification and heterotrophic denitrification (11, 23). Oxygen-limited autotrophic nitrification and denitrification (OLAND) is one of the autotrophic processes used and is a one-stage procedure; i.e., partial nitritation and anammox occur in the same reactor (30). The “functional” autotrophic microorganisms in OLAND include aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB). With oxygen, AerAOB oxidize ammonium to nitrite (nitritation), and with the nitrite AnAOB oxidize the residual ammonium to form dinitrogen gas and some nitrate (anammox). Additional aerobic nitrite oxidation to nitrate (nitratation) by nitrite-oxidizing bacteria (NOB) lowers the nitrogen removal efficiency, but it can, for instance, be prevented at low dissolved oxygen (DO) levels because the oxygen affinity of AerAOB is higher than that of NOB (16). Reactor configurations for the OLAND process can be based on suspended biomass growing in aggregates, like that in a sequencing batch reactor (SBR) (37) or a gas lift or upflow reactor (32). For suspended-growth systems there are two important challenges: biomass retention and equilibrated microbial activities.High biomass retention efficiency is a prerequisite in anammox technologies because of the slow growth of AnAOB (33). In suspended biomass systems, settling properties determine the retention of biomass and are related to the microbial aggregate morphology (floc or granule) and size. Granules can be defined as compact and dense aggregates with an approximately spherical external appearance that do not coagulate under decreased hydrodynamic shear conditions and settle significantly faster than flocs (18). Toh and coworkers calculated a lower sludge volume index for aerobic granules than for aerobic flocs and also showed that there was an increase in the settling velocity with increasing granule size (35). Hence, in terms of physical properties, large granules are preferable for suspended-growth applications.OLAND aggregate size not only influences settling properties but also affects the proportion of microbial nitrite production and consumption; lower AerAOB activity and higher AnAOB activity were observed with larger aggregates (25, 37). Theoretically, a microbial aggregate with equal nitrite production and nitrite consumption can remove ammonium autonomously, because of its independence from other aggregates for acquisition and conversion of nitrite. Hence, with an increasing aggregate size and thus with a decreasing ratio of nitrite production to nitrite consumption, three functional categories of aggregates can be distinguished: nitrite sources, autonomous nitrogen removers, and nitrite sinks. Because minimal nitrite accumulation is one of the prerequisites for high nitrogen removal efficiency in OLAND reactors, the presence of excess small aggregates is undesirable (9, 37).Although large granular aggregates are desirable for biomass retention and activity balance, so far no formation mechanisms have been proposed for OLAND granules, in contrast to the well-studied anaerobic (13) and aerobic (1) granules. In order to determine general and environment-specific determinants for aggregate size and architecture, three suspended-growth OLAND reactors with different inoculation and operation (mixing and aeration) parameters were selected, and these reactors were designated reactors A, B, and C (Table (Table1).1). The first objective of this study was to gain more insight into the relationship between OLAND aggregate size, AerAOB and AnAOB abundance, and the activity balance. The second objective was to propose pathways for aggregation and granulation by relating (dis)similarities in aggregate size distribution, morphology, and architecture to differences in reactor inoculation and operation.

TABLE 1.

Overview of the three OLAND reactor systems from which suspended biomass samples were obtained
ParameterReactor AaReactor BaReactor C
Reactor typeSBRSBRUpflow reactor
Vol (m3)0.0024.1600
Reactor ht/diam ratio0.940.5-0.8
InoculumOLAND biofilmActivated sludgeAnammox granules
WastewaterSyntheticDomesticbIndustrialc
Influent ammonium concn (mg N liter−1)230-330800250-350
Nitrogen removal rate (g N liter−1 day −1)0.45,d 1.1e0.651.3
Effluent nitrite concn (mg N liter−1)30-40d5-105-10
Influent COD/effluent COD (mg liter−1)0/0240/220200/150
pH7.4-7.87.4-7.68.0
Temp (°C)352530-35
DO level (mg O2 liter−1)0.4-1.10.5-1.02.0-3.0
Mixing mechanismMagnetic stirrerBladed impellerAeration
Biomass retention mechanismMSV, >0.73 m h−1MSV, >1.4 m h−1Three-phase separator
Sampling time (months after start-up)2d830
Open in a separate windowaAggregates settling at a rate higher than the minimum settling velocity (MSV) were not washed out of the sequencing batch reactors (SBR). The MSV was calculated by dividing the vertical distance of the water volume decanted per cycle by the settling time.bSupernatant from a municipal sludge digestor.cEffluent from a potato-processing factory pretreated with anaerobic digestion and struvite precipitation.dObtained at the end of a reactor start-up study (37).eObtained at the end of a reactor start-up study (9).  相似文献   
5.
During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here that oocytes of Fshb(-/-) mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb(-/-) mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb(-/-) mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, only a small number of embryos derived from oocytes of Fshb(-/-) mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts obtained subsequently. These results indicate that FSH is not absolutely required for oocyte development in vivo but that this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germline and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg.  相似文献   
6.
7.
The incompatible interaction between the rice cultivar Manikpukha and the rice stem nematode Ditylenchus angustus has been reported recently. This research focuses on the underlying mechanisms of resistance in Manikpukha. Invasion, post‐infection development and reproduction of D. angustus were compared in compatible and incompatible interactions to identify the stage in which resistance occurs. The results indicate that resistance in Manikpukha is associated with reduced development and reproduction, implying that resistance acts post‐invasion. We studied the possible involvement of three classical defence hormones, salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), in response to infection in a compatible interaction using biosynthesis/signalling‐deficient transgenic rice lines. All three hormones appear to have an influence on the basal defence of Nipponbare against the stem nematode. Although hormone application increases basal defences, expression studies and hormone analyses after nematode infection in Manikpukha did not show a clear involvement of the hormone defense pathways for SA, ET and JA. However, it seems that OsPAL1 plays a pivotal role in resistance, indicating that the phenylpropanoid pathway and its products might be key players in the incompatible interaction. Lignin measurement showed that, although basal levels are similar, Manikpukha had a significantly higher lignin content on nematode infection, whereas it was decreased in the susceptible cultivar. The results presented here show that SA, ET and JA are involved in basal defences, but the resistance of Manikpukha against D. angustus probably relies on products of the phenylpropanoid pathway.  相似文献   
8.

The number of studies dealing with tertiary ozonation to remove trace organic contaminants (TrOCs) in effluents originating from wastewater treatment plants (WWTPs) is increasing due to the need for upgrading the WWTPs overall performance. To follow-up TrOCs removal in real-time during ozone-based treatment, online surrogate measurements are necessary, of which mainly spectroscopic surrogates (i.e. UV–VIS absorbance and fluorescence) are the emerging techniques in literature. This paper summarizes and reflects on the state-of-the-art as retrieved from more than 100 peer-reviewed studies published between January 2007 and December 2020 and dealing with (1) surrogate correlation models for the prediction of TrOCs removal in secondary effluent and (2) control strategies to adjust the ozone dose during (full-scale) operation. Next to the flow and load proportional ozone dosing strategies, controlling the ozone dose solely based on the characteristics of the effluent entering the ozonation unit, also a differential control strategy based on the change in characteristics due to ozonation of the WWTP effluent is highlighted. The latter seems the best option as flow and load proportional ozone dosing do not consider the amount and/or reactivity of the matrix constituents. The presence of organic and inorganic scavengers of ozone and radicals in the effluent matrix has a significant impact on the TrOCs removal efficiency. This effluent quality can differ in time and between WWTPs, hence the surrogate correlation models should be widely applicable. At the end of the review, recommendations are made for future research and implementation of an effective control strategy for (full-scale) applications.

  相似文献   
9.
A computer simulation technique was used to analyse data on the proliferation of clonogenic cells in EMT6 tumours treated with 5 mg/mouse of hydroxyurea (HU) or 3·0 Gy (300 rads) X-rays. This simulation technique is able to determine the respective roles of selective killing, blocks in cell progression and recruitment of the treated population. When the technique was applied to tumours treated with HU, it was possible to prove that both a G1/S block and recruitment occurred. These phenomena could not have been demonstrated quantitatively, or even qualitatively, without the use of the simulation. After irradiation, blocks in cell progression and differences in the proliferative patterns of the surviving clonogenic cells and the total tumour cell population were found.  相似文献   
10.
Insulin-like growth factor-I (IGF-I) is involved in the regulation of ovarian follicular development and has been shown to potentiate the FSH responsiveness of granulosa cells from preantral follicles. The aim of the present study was to investigate the effect of IGF-I during preantral follicular culture on steroidogenesis, subsequent oocyte maturation, fertilization, and embryo development in mice. Preantral follicles were isolated mechanically and cultured for 12 days in a simplified culture medium supplemented with 1% fetal calf serum, recombinant human FSH, transferrin, and selenium. In these conditions, follicles were able to grow and produce oocytes that could be matured and fertilized. The first experiment analyzed the effect of different concentrations of IGF-I (0, 10, 50, or 100 ng/ml) added to the culture medium on the follicular survival, steroidogenesis, and the oocyte maturation process. The presence of IGF-I during follicular growth increased the secretion of estradiol but had no effect on the subsequent oocyte survival and maturation rates. In the second experiment, IGF-I (0 or 50 ng/ml) was added to the culture medium during follicular growth, oocyte maturation, or both, and subsequent oocyte fertilization and embryo development rates were evaluated. Oocyte fertilization rates were comparable in the presence or absence of IGF-I. However, the blastocyst development rate was enhanced after follicular culture in the presence of IGF-I. Moreover, the total cell number of the blastocysts observed after differential labeling staining was also higher when follicles were cultured or matured in the presence of IGF-I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号