全文获取类型
收费全文 | 91篇 |
免费 | 26篇 |
国内免费 | 1篇 |
专业分类
118篇 |
出版年
2016年 | 1篇 |
2015年 | 5篇 |
2014年 | 3篇 |
2013年 | 1篇 |
2012年 | 2篇 |
2011年 | 5篇 |
2010年 | 5篇 |
2009年 | 3篇 |
2008年 | 2篇 |
2007年 | 6篇 |
2006年 | 2篇 |
2005年 | 3篇 |
2004年 | 7篇 |
2003年 | 5篇 |
2002年 | 5篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1979年 | 7篇 |
1978年 | 3篇 |
1977年 | 3篇 |
1976年 | 1篇 |
1971年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有118条查询结果,搜索用时 0 毫秒
1.
DON AT AGOSTI 《Systematic Entomology》1994,19(2):93-117
Abstract. The holarctic ant tribe Formicini is revised, the new genus Bajcaridris described, and possible phylogenetic relationships are discussed. The subgenus Iberoformica is synonymized with Formica. A synopsis, diagnosis and keys to the genera are provided. 相似文献
2.
We find that in contrast to strongly adherent, slow moving cells such as fibroblasts, neutrophils exert contractile stresses largely in the rear of the cell (uropod) relative to the direction of motion. Rather than the leading edge pulling the cell, the rear is both anchoring the cell and the area in which the contractile forces are concentrated. These tractions rapidly reorient themselves during a turn, on a timescale of seconds to minutes, and their repositioning precedes and sets the direction of motion during a turn. We find the total average root mean-squared traction force to be 28+/-10 nN during chemokinesis, and 67+/-10 nN during chemotaxis. We hypothesize that the contraction forces in the back of the neutrophil not only break uropodial adhesive contacts but also create a rearward squeezing contractility, as seen in amoeboid or amoeboidlike cells and the formation of blebs in cells, causing a flow of intracellular material to the fluidlike lamellipod. Our findings suggest an entirely new model of neutrophil locomotion. 相似文献
3.
Iu M Evdokimov S G Skuridin A T Dembo E V Shtykova V A Kadykov 《Molekuliarnaia biologiia》1979,13(5):1110-1123
Different physico-chemical methods (CD, ORD, small-angle X-ray diffraction, etc) were used for investigating the properties of the DNA compact particles formed in PEG-containing water-salt solutions. It has been shown that small-angle reflection, characteristic of the DNA compact particles, changes from 36.8 A (CPEG = 140 mg/ml) to 25 A (CPEG = 300 mg/ml). The maximal optical activity (the intense negative CD-band and optical rotation [alpha] = 60 000 degrees) are inherent properties of the DNA compact particles formed at CPEG 120--180 mg/ml. The high optical activity points to the twist of DNA chromophores through the DNA molecule resulting in a long-rang pitch (P approximately 2000A).Such macroscopic superhelical structure (diameter 40--30 A) is due to conformational distortion of the DNA double-helix with alternating "left" and "right" orientation of chromophoes. Disappearance of conformation distortion is accompanied by disappearance of the high optical activity of the DNA compact particles and results in a small-angle reflection of 25 A. Taking into account the reasons of formation of the optically-active DNA compact particles conditions are suggested to conserve high optical activity at CPEG equal to 400 mg/ml. 相似文献
4.
5.
Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts 总被引:10,自引:0,他引:10
下载免费PDF全文

Mechanical interactions between cell and substrate are involved in vital cellular functions from migration to signal transduction. A newly developed technique, traction force microscopy, makes it possible to visualize the dynamic characteristics of mechanical forces exerted by fibroblasts, including the magnitude, direction, and shear. In the present study such analysis is applied to migrating normal and transformed 3T3 cells. For normal cells, the lamellipodium provides almost all the forces for forward locomotion. A zone of high shear separates the lamellipodium from the cell body, suggesting that they are mechanically distinct entities. Timing and distribution of tractions at the leading edge bear no apparent relationship to local protrusive activities. However, changes in the pattern of traction forces often precede changes in the direction of migration. These observations suggest a frontal towing mechanism for cell migration, where dynamic traction forces at the leading edge actively pull the cell body forward. For H-ras transformed cells, pockets of weak, transient traction scatter among small pseudopods and appear to act against one another. The shear pattern suggests multiple disorganized mechanical domains. The weak, poorly coordinated traction forces, coupled with weak cell-substrate adhesions, are likely responsible for the abnormal motile behavior of H-ras transformed cells. 相似文献
6.
The Journal of Membrane Biology - Various independent kinetic criteria for indicating multiplicity of carrier-mediated entry of folate compounds into L1210 cell plasma membrane vesicles are... 相似文献
7.
8.
本文报道海拔3417m和4280m地区世居藏族和移居汉族青少年运动状态下心肺功能的对比研究。结果显示:3417m和4280m世居藏族的最大氧耗量、无氧阈值及最大心输出量都明显大于汉族,血氧饱和度(Sao2)随运动负荷的增加而降低。海拔3417m藏、汉族的△Sao2分别为7.46%和10.03%,4280m处为8.57%和13.75%,最大心率随海拔升高而下降。研究提示,藏族青少年有较高的最大有氧能力,反映了他们对低氧环境的适应优势。 相似文献
9.
Proper functioning of the innate immune response depends on migration of circulating neutrophils into tissues at sites of infection and inflammation. Migration of highly motile, amoeboid cells such as neutrophils has significant physiological relevance, yet the traction forces that drive neutrophil motion in response to chemical cues are not well characterized. To better understand the relationship between chemotactic signals and the organization of forces in motile neutrophils, force measurements were made on hydrogel surfaces under well-defined chemotactic gradients created with a microfluidic device. Two parameters, the mean chemoattractant concentration (CM) and the gradient magnitude (Δc/Δx) were varied. Cells experiencing a large gradient with CM near the chemotactic receptor KD displayed strong punctate centers of uropodial contractile force and strong directional motion on stiff (12 kPa) surfaces. Under conditions of ideal chemotaxis—cells in strong gradients with mean chemoattractant near the receptor KD and on stiffer substrates—there is a correlation between the magnitude of force generation and directional motion as measured by the chemotactic index. However, on soft materials or under weaker chemotactic conditions, directional motion is uncorrelated with the magnitude of traction force. Inhibition of either β2 integrins or Rho-associated kinase, a kinase downstream from RhoA, greatly reduced rearward traction forces and directional motion, although some vestigial lamellipodium-driven motility remained. In summary, neutrophils display a diverse repertoire of methods for organizing their internal machinery to generate directional motion. 相似文献
10.
It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious. 相似文献