首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  1988年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

Background

Interleukin-17 (IL-17) acts as a key regulator in central nervous system (CNS) inflammation. γδ T cells are an important innate source of IL-17. Both IL-17+ γδ T cells and microglia, the major resident immune cells of the brain, are involved in various CNS disorders such as multiple sclerosis and stroke. Also, activation of Toll-like receptor (TLR) signaling pathways contributes to CNS damage. However, the mechanisms underlying the regulation and interaction of these cellular and molecular components remain unclear.

Objective

In this study, we investigated the crosstalk between γδ T cells and microglia activated by TLRs in the context of neuronal damage. To this end, co-cultures of IL-17+ γδ T cells, neurons, and microglia were analyzed by immunocytochemistry, flow cytometry, ELISA and multiplex immunoassays.

Results

We report here that IL-17+ γδ T cells but not naïve γδ T cells induce a dose- and time-dependent decrease of neuronal viability in vitro. While direct stimulation of γδ T cells with various TLR ligands did not result in up-regulation of CD69, CD25, or in IL-17 secretion, supernatants of microglia stimulated by ligands specific for TLR2, TLR4, TLR7, or TLR9 induced activation of γδ T cells through IL-1β and IL-23, as indicated by up-regulation of CD69 and CD25 and by secretion of vast amounts of IL-17. This effect was dependent on the TLR adaptor myeloid differentiation primary response gene 88 (MyD88) expressed by both γδ T cells and microglia, but did not require the expression of TLRs by γδ T cells. Similarly to cytokine-primed IL-17+ γδ T cells, IL-17+ γδ T cells induced by supernatants derived from TLR-activated microglia also caused neurotoxicity in vitro. While these neurotoxic effects required stimulation of TLR2, TLR4, or TLR9 in microglia, neuronal injury mediated by bone marrow-derived macrophages did not require TLR signaling. Neurotoxicity mediated by IL-17+ γδ T cells required a direct cell-cell contact between T cells and neurons.

Conclusion

Taken together, these results point to a crucial role for microglia activated through TLRs in polarization of γδ T cells towards neurotoxic IL-17+ γδ T cells.  相似文献   
2.
3.
The effect of fusicoccin (FC) on adventitious root formationwas investigated using in vitro shoot tip cultures of birch(Betula pendula ROTH) as test system. Treatment with 10–7–10–5M FC hastened root appearance as well as 5 ? 10–6 M IAAdid. Optimal FC concentrations also promoted rooting by increasingthe root number per cutting. FC application during the first48 hours of culture was enough to obtain these effects. Usinginternode segments without any bud it was shown that FC couldnot replace the root inducing activity of endogenous auxin asapplied IAA did, but FC lowered the threshold concentrationof IAA for rooting response and stimulated adventitious rootformation if it was applied with IAA simultanously. Root growthwas enhanced in the early phase but inhibited later by continuoustreatment with FC. Some aspects of possible FC IAA interactionsare discussed. (Received September 4, 1986; Accepted November 24, 1987)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号