首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   117篇
  2023年   8篇
  2022年   18篇
  2021年   27篇
  2020年   20篇
  2019年   23篇
  2018年   23篇
  2017年   21篇
  2016年   37篇
  2015年   81篇
  2014年   87篇
  2013年   97篇
  2012年   151篇
  2011年   121篇
  2010年   112篇
  2009年   82篇
  2008年   84篇
  2007年   93篇
  2006年   91篇
  2005年   70篇
  2004年   73篇
  2003年   57篇
  2002年   63篇
  2001年   9篇
  2000年   4篇
  1999年   11篇
  1998年   11篇
  1997年   2篇
  1996年   5篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1982年   1篇
  1980年   1篇
  1971年   1篇
排序方式: 共有1493条查询结果,搜索用时 15 毫秒
1.
This review examines the evidence that skeletal muscles can sense the status of the peripheral vascular network through group III and IV muscle afferent fibers. The anatomic and neurophysiological basis for such a mechanism is the following: 1) a significant portion of group III and IV afferent fibers have been found in the vicinity and the adventitia of the arterioles and the venules; 2) both of these groups of afferent fibers can respond to mechanical stimuli; 3) a population of group III and IV fibers stimulated during muscle contraction has been found to be inhibited to various degrees by arterial occlusion; and 4) more recently, direct evidence has been obtained showing that a part of the group IV muscle afferent fibers is stimulated by venous occlusion and by injection of vasodilatory agents. The physiological relevance of sensing local distension of the vascular network at venular level in the muscles is clearly different from that of the large veins, since the former can directly monitor the degree of tissue perfusion. The possible involvement of this sensing mechanism in respiratory control is discussed mainly in the light of the ventilatory effects of peripheral vascular occlusions during and after muscular exercise. It is proposed that this regulatory system anticipates the chemical changes that would occur in the arterial blood during increased metabolic load and attempts to minimize them by adjusting the level of ventilation to the level of muscle perfusion, thus matching the magnitudes of the peripheral and pulmonary gas exchange.  相似文献   
2.
3.
4.
Crepis dinarica andC. froelichiana are two closely related species of theC. praemorsa complex. Even though they exhibit the same chromosome number (2n = 8) and similar idiogram shape, they differ widely in quantity and distribution of heterochromatin bands. The hybrids between these two species comprise three morphological types. Parental genomes were distinguished in hybrids by Giemsa differential staining (C-banding). Although meiosis presents only a few abnormalities (about 2.4%), the percentage of aborted pollen grains is very high (90%).  相似文献   
5.
Antigens for Grand Arbaud, Hazara, and California arboviruses were able to agglutinate goose and either dog, hamster and guinea pig, or hamster red blood cells (RBC) to the same titer at the same pH; in hemagglutination-inhibition (HI) tests, titers for homologous and related sera were the same with these different types of RBC or occasionally one dilution higher with the mammalian cells. Antigens for St. Louis encephalitis and Eastern equine encephalitis viruses required use of lower antigen dilutions with human, guinea pig, and hamster RBC than with goose RBC. The results of comparative HI testing with these latter antigens and types of RBC indicate that HI titer is not directly related to the antigen dilution used with different types of RBC.  相似文献   
6.
Abstract: The presence of P-glycoprotein in the cell plasma membrane limits the penetration of many cytotoxic substances into cells that express the gene product. There is considerable evidence also to indicate that P-glycoprotein is expressed as part of the normal blood-brain barrier in the luminal membranes of the cerebral capillary endothelial cells, where it presumably performs a protective function for the brain. This report describes the functional expression of P-glycoprotein in an immortalised cell line, RBE4, derived from rat cerebral capillary endothelial cells. The expression of P-glycoprotein is demonstrated by western immunoblotting and by immunogold and fluorescent staining with monoclonal antibodies. The cellular accumulation of [3H]colchicine and [3H]vinblastine is investigated and shown to be enhanced by the presence of azidothymidine, chlorpromazine, verapamil, cyclosporin A, and PSC 833 ([3'-keto-Bmt1]-[Val2]-cyclosporin) at 50 or 100 µ M concentration. It is concluded that the RBE4 cell line is a valuable tool for investigating the mechanisms of P-glycoprotein activity both in the blood-brain barrier and in multidrug resistance in general.  相似文献   
7.
Resonance Raman experiments were performed on different green bacteria. With blue excitation, i.e. under Soret resonance or preresonance conditions, resonance Raman contributions were essentially arising from the chlorosome pigments. By comparing these spectra and those of isolated chlorosomes, it is possible to evaluate how the latter retain their native structure during the isolation procedures. The structure of bacteriochlorophyll oligomers in chlorosomes was interspecifically compared, in bacteriochlorophyllc- and bacteriochlorophylle- synthesising bacteria. It appears that interactions assumed by the 9-keto carbonyl group are identical inChlorobium limicola, Chlorobium tepidum, andChlorobium phaeobacteroides. In the latter strain, the 3-formyl carbonyl group of bacteriochlorophylle is kept free from intermolecular interactions. By contrast, resonance Raman spectra unambiguously indicate that the structure of bacteriochlorophyll oligomers is slightly different in chlorosomes fromChloroflexus auranticus, either isolated or in the whole bacteria.  相似文献   
8.

Aim

It is crucial to monitor how the productivity of grasslands varies with its temporal stability for management of these ecosystems. However, identifying the direction of the productivity–stability relationship remains challenging because ecological stability has multiple components that can display neutral, positive or negative covariations. Furthermore, evidence suggests that the direction of the productivity–stability relationship depends on the biotic interactions and abiotic conditions that underlie ecosystem productivity and stability. We decipher the relationships between grassland productivity and two components of its stability in four habitat types with contrasting environments and flora.

Location

France.

Time period

2000–2020.

Major taxa

Grassland plant species.

Methods

We used c. 20,000 vegetation plots spread across French permanent grasslands and remotely sensed vegetation indices to quantify grassland productivity and temporal stability. We decomposed stability into constancy (i.e., temporal invariability) and resistance (i.e., maximum deviation from average) and deciphered the direct and indirect effects of abiotic (namely growing season length and nitrogen input) and biotic (namely plant taxonomic diversity, trait diversity and community-weighted mean traits) factors on productivity–stability relationships using structural equation models.

Results

We found a positive relationship between productivity and constancy and a negative relationship between productivity and resistance in all habitats. Abiotic factors had stronger effects on productivity and stability compared with biotic factors. A longer growing season enhanced grassland productivity and constancy. Nitrogen input had positive and negative effects on grassland productivity and resistance, respectively. Trait values affected the constancy and resistance of grassland more than taxonomic and trait diversity, with effects varying from one habitat to another. Productivity was not related to any biotic factor.

Main conclusions

Our findings reveal how vital it is to consider both the multiple components of stability and the interaction between environment and biodiversity to gain an understanding of the relationships between productivity and stability in real-world ecosystems, which is a crucial step for sustainable grassland management.  相似文献   
9.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号