首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
Inter-annual variability in marine coastal Antarctic bacterioplankton   总被引:1,自引:1,他引:0  
The dynamics of Antarctic coastal marine bacterioplankton has been studied over a 2-year period. Two field stations were sampled between one and three times a week in 1989 and 1991 in the “Terre Adélie” area. The survey included physicochemical (temperature and particulate organic matter) and bacteriological (total and heterotrophic counts, cell volume and frequency of dividing cells estimation) measurements. The results suggest that a strong interannual variability affects the total bacterial abundance, the mean cell volume, the percentage of free living cells and, to a lesser extent. the culturable saprophytic bacterial communities. The observed variability could be partly explained by a large deficit of solar irradiance during the 2nd year of study that may have affected sea ice and seawater primary production.  相似文献   
2.
3.
Drinking water quality management requires early warning tools which enable water supply companies to detect quickly and to forecast degradation of the microbial quality of drinking water during its transport throughout distribution systems. This study evaluated the feasibility of assessing, in real time, drinking water biostability by monitoring in situ the evolution of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) fingerprint of a nascent reference biofilm exposed to water being tested. For this purpose, the responses of nascent Pseudomonas fluorescens biofilms to variations in the dissolved organic carbon (DOC) level in tap water were monitored in situ and in real time by ATR-FTIR spectroscopy. Nascent P. fluorescens biofilms consisting of a monolayer of bacteria were formed on the germanium crystal of an ATR flowthrough cell by pumping bacterial suspensions in Luria-Bertani (LB) medium through the cell. Then they were exposed to a continuous flow of dechlorinated sterile tap water supplemented with appropriate amounts of sterile LB medium to obtain DOC concentrations ranging from 1.5 to 11.8 mg/liter. The time evolution of infrared bands related to proteins, polysaccharides, and nucleic acids clearly showed that changes in the DOC concentration resulted in changes in the nascent biofilm ATR-FTIR fingerprint within 2 h after exposure of the biofilm to the water being tested. The initial bacterial attachment, biofilm detachment, and regrowth kinetics determined from changes in the areas of bands associated with proteins and polysaccharides were directly dependent on the DOC level. Furthermore, they were consistent with bacterial adhesion or growth kinetic models and extracellular polymeric substance overproduction or starvation-dependent detachment mechanisms.  相似文献   
4.
Biodegradation by naturally occurring populations of microorganisms is a major mechanism for the removal of oil hydrocarbons from the environment. Therefore, follow-up of bacterial populations and chemical indices of biodegradation are important components of contaminated site assessment studies. Over a 4-year period following an accidental diesel contamination of the sub-Antarctic Crozet Archipelago (51°51′E–46°25′S), a field study was carried out in the contaminated area that is located in a transition zone between an arid fell-field (upstream) and a wet vegetated area (downstream). This study included a monitoring of heterotrophic and hydrocarbon-degrading bacterial abundance and chemical analysis of the remaining hydrocarbons. Significant higher number of heterotrophic and hydrocarbon-degrading bacterial counts revealed a rapid acclimation of sub-Antarctic microbial soil communities to the diesel fuel contamination. A chemical survey conducted during the last 2 years (2002 and 2003) showed that the total extractable hydrocarbons (TPH) content in arid fell field was reduced to ≤50% of their value while it was reduced only to ≤65% in vegetated soil. In addition, the decrease of TPH was always higher in the presence of fertilizer in the arid contaminated area, while fertilizer addition was almost inefficient in the wet contaminated one. All these results demonstrate a serious influence of the soil properties on the degradation rate. However, all chemical indices showed a significant reduction of alkanes and light aromatics in both contaminated area confirming a regular oil degradation process.  相似文献   
5.
Biological treatment has become increasingly popular as a remediation method for soils and groundwater contaminated with petroleum hydrocarbon, chlorinated solvents, and pesticides. Bioremediation has been considered for application in cold regions such as Arctic and sub-Arctic climates and Antarctica. Studies to date suggest that indigenous microbes suitable for bioremediation exist in soils in these regions. This paper reports on two case studies at the sub-Antarctic Kerguelen Island in which indigenous bacteria were found that were capable of mineralizing petroleum hydrocarbons in soil contaminated with crude oil and diesel fuel. All results demonstrate a serious influence of the soil properties on the biostimulation efficiency. Both temperature elevation and fertilizer addition have a more significant impact on the microbial assemblages in the mineral soil than in the organic one. Analysis of the hydrocarbons remaining at the end of the experiments confirmed the bacterial observations. Optimum temperature seems to be around 10 degrees C in organic soil, whereas it was higher in mineral soil. The benefit of adding nutrients was much stronger in mineral than in the organic soil. Overall, this study suggests that biostimulation treatments were driven by soil properties and that ex situ bioremediation for treatment of cold contaminated soils will allow greater control over soil temperature, a limiting factor in cold climates.  相似文献   
6.
Drinking water quality management requires early warning tools which enable water supply companies to detect quickly and to forecast degradation of the microbial quality of drinking water during its transport throughout distribution systems. This study evaluated the feasibility of assessing, in real time, drinking water biostability by monitoring in situ the evolution of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) fingerprint of a nascent reference biofilm exposed to water being tested. For this purpose, the responses of nascent Pseudomonas fluorescens biofilms to variations in the dissolved organic carbon (DOC) level in tap water were monitored in situ and in real time by ATR-FTIR spectroscopy. Nascent P. fluorescens biofilms consisting of a monolayer of bacteria were formed on the germanium crystal of an ATR flowthrough cell by pumping bacterial suspensions in Luria-Bertani (LB) medium through the cell. Then they were exposed to a continuous flow of dechlorinated sterile tap water supplemented with appropriate amounts of sterile LB medium to obtain DOC concentrations ranging from 1.5 to 11.8 mg/liter. The time evolution of infrared bands related to proteins, polysaccharides, and nucleic acids clearly showed that changes in the DOC concentration resulted in changes in the nascent biofilm ATR-FTIR fingerprint within 2 h after exposure of the biofilm to the water being tested. The initial bacterial attachment, biofilm detachment, and regrowth kinetics determined from changes in the areas of bands associated with proteins and polysaccharides were directly dependent on the DOC level. Furthermore, they were consistent with bacterial adhesion or growth kinetic models and extracellular polymeric substance overproduction or starvation-dependent detachment mechanisms.  相似文献   
7.
In an attempt to evaluate the potential of petroleum bioremediation at high latitudes environments, microcosm studies using Antarctic coastal seawater contaminated with diesel or crude oil were conducted in Kerguelen Archipelago (49°22′S, 70°12′E). Microcosms were incubated at three different temperatures (4, 10 and 20°C). During experiments, changes observed in microbial assemblages (total direct count, heterotrophic cultivable microorganisms and hydrocarbon-degrading microorganisms) were generally similar for all incubation temperatures, but chemical data showed only some slight changes in biodegradation indices [Σ(C12–C20)/Σ(C21–C32) and C17/pristane]. The complete data set provided strong evidence of the presence of indigenous hydrocarbon-degrading bacteria in Antarctic seawater and their high potential for hydrocarbon bioremediation. The rate of oil degradation could be increased by the addition of a commercial fertilizer, but water temperature had little effects on biodegradation efficiency which is in conflict with the typical temperature-related assumption predicting 50% rate reduction when temperature is reduced by 10°C. Global warming of Antarctic seawater should not increase significantly the rate of oil biodegradation in these remote regions.  相似文献   
8.
The partial pressure of carbon dioxide (pCO2), calculated from pH and total alkalinity measurements, was monitored together with chlorophyll a and bacterioplankton biomass in shallow coastal water located inside and outside a giant kelp bed (Macrocystis pyrifera) situated in the Kerguelen Archipelago, Southern Ocean. In spite of large changes over a short time-scale, pCO2 variations over the year are large and exhibit a seasonal pattern in which the different stages of the annual biological turnover are well marked. The overall pattern of pCO2 variations is related to biological activity (development of both photosynthesis and respiration) during almost the whole year. However, physical and thermodynamical constraints exert a strong influence on pCO2 at meso time-scale (10 days) and/or when biological activity is weak. Macrocystis acts to maintain pCO2 below saturation almost the whole year and large undersaturations (pCO2 as low as 20 μatm) were observed within the kelp bed. Furthermore, primary production of Macrocystis covers a period of 8 ∼ 9 months a year from winter to late summer and the kelp bed seems to favour the spring phytoplanktonic bloom. The buffer factor β indicates that, outside the kelp bed, inorganic carbon dynamics are mainly influenced by air-sea exchange and photosynthesis without calcification. Inside the kelp bed, β suggests calcification by the epiphytic community. Accepted: 1 April 2000  相似文献   
9.
The seasonal variations of bacterial and phytoplanktonic biomass were studied during several pluri-annual surveys in the subantarctic Morbihan Bay (Kerguelen Islands, 49 ° 20 S; 70 ° 10 E). Large interannual variation was observed. Phytoplanktonic biomass showed moderate values during winter and autumn. They increased sharply in spring, reaching a maximum value of about 1 mg C l–1 corresponding to an important depletion of nutrients. A second phytoplanktonic bloom of similar amplitude occurred in late summer. During algal blooms which were roughly associated with optimal values of solar irradiation for the first one and with the highest temperatures for the second one, phytoplanktonic material represented near 100% of particulate and living carbon. Bacteria showed maximal abundance (0.2 to 0.7 mg C l–1) during summer or autumn. Their relative abundance, which represented less than 1% of the living biomass in spring and summer, can reach more than 95% in autumn and winter.  相似文献   
10.
Summary Previous Antarctic studies have pointed out the ecological importance of ornithogenic soils. However, few data exist to determine the impact of the bird's manuring on surrounding seawater microbial populations. In order to evaluate the influence of birds manuring, the relationships between the spatial distributions of seawater bacterial microflora and some related biological (chlorophyll pigments) and physicochemical (seston, NH4 + & NO3 ) parameters were studied during the Antarctic summer 1988 in the Terre Adelie land area. The clearly decreasing gradient from the shore towards the open sea previously reported for bacterial microflora (from 104 to 1 CFU ml–1 for heterotrophic bacteria and from 105 to 5.0103 cells ml–1 for total bacteria) was also observed for organic and mineral nutrients (from 1.09 mg Cl–1 to 0.1 mg Cl–1 for POC and from 196 to 17 mole l–1 for NH 4 + ) but not for chlorophyll pigments. The absence of any observable phytoplankton enrichment in the coastal area suggests a direct interaction between the birds manuring and the bacterial seawater microflora.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号