首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   5篇
  2017年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1961年   1篇
排序方式: 共有29条查询结果,搜索用时 218 毫秒
1.
The objective of this review is to outline those parts of modelling approaches in pig production which are not highly developed; these are the partitioning of protein and lipid accretion in different anatomical body parts. The authors introduce present models with a critical evaluation and draw some conlusions for further developments. Based on present knowledge this paper demonstrates the process of protein and fat accretion in different body compartments in pigs and influencing factors. A further aim is to assist in the conceptual development of a new pig model, which is more detailed, precise and accurate than currently available models. Exsisting models are generally deficient with regard to the translation of lipid and protein gain into lean and fatty tissue. Only assumed values for this translation have been used so far and the concepts underlying these values are not well understood. Therefore, it may be appropriate to develop a compartimental model to predict protein and fat deposition in growing and fattening pigs. With this new approach the model can supply sufficiently the changing consumer demands regarding to the possibility of meat quality prediction.  相似文献   
2.
Soil inorganic carbon storage pattern in China   总被引:1,自引:0,他引:1  
Soils with pedogenic carbonate cover about 30% (3.44 × 106 km2) of China, mainly across its arid and semiarid regions in the Northwest. Based on the second national soil survey (1979–1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3±6.3 PgC (1 Pg=1015 g) to the depth investigated to 2 m. Soil inorganic carbon storages were 4.6, 10.6, 11.1, and 20.8 Pg for the depth ranges of 0–0.1, 0.1–0.3, 0.3–0.5, and 0.5–1 m, respectively. Stocks for 0.1, 0.3, 0.5, and 1 m of depth accounted for 8.7%, 28.7%, 49.6%, and 88.9% of total SIC, respectively. In contrast with soil organic carbon (SOC) storage, which is highest under 500–800 mm yr−1 of mean precipitation, SIC storage peaks where mean precipitation is <400 mm yr−1. The amount and vertical distribution of SIC was related to climate and land cover type. Content of SIC in each incremental horizon was positively related with mean annual temperature and negatively related with mean annual precipitation, with the magnitude of SIC content across land cover types showing the following order: desert, grassland >shrubland, cropland >marsh, forest, meadow. Densities of SIC increased generally with depth in all ecosystem types with the exception of deserts and marshes where it peaked in intermediate layers (0.1–0.3 m for first and 0.3–0.5 m for latter). Being an abundant component of soil carbon stocks in China, SIC dynamics and the process involved in its accumulation or loss from soils require a better understanding.  相似文献   
3.
Little is known about the evolutionary history of most complex multi‐trophic insect communities. Widespread species from different trophic levels might evolve in parallel, showing similar spatial patterns and either congruent temporal patterns (Contemporary Host‐tracking) or later divergence in higher trophic levels (Delayed Host‐tracking). Alternatively, host shifts by natural enemies among communities centred on different host resources could disrupt any common community phylogeographic pattern. We examined these alternative models using two Megastigmus parasitoid morphospecies associated with oak cynipid galls sampled throughout their Western Palaearctic distributions. Based on existing host cynipid data, a parallel evolution model predicts that eastern regions of the Western Palaearctic should contain ancestral populations with range expansions across Europe about 1.6 million years ago and deeper species‐level divergence at both 8–9 and 4–5 million years ago. Sequence data from mitochondrial cytochrome b and multiple nuclear genes showed similar phylogenetic patterns and revealed cryptic genetic species within both morphospecies, indicating greater diversity in these communities than previously thought. Phylogeographic divergence was apparent in most cryptic species between relatively stable, diverse, putatively ancestral populations in Asia Minor and the Middle East, and genetically depauperate, rapidly expanding populations in Europe, paralleling patterns in host gallwasp species. Mitochondrial and nuclear data also suggested that Europe may have been colonized multiple times from eastern source populations since the late Miocene. Temporal patterns of lineage divergence were congruent within and across trophic levels, supporting the Contemporary Host‐tracking Hypothesis for community evolution.  相似文献   
4.
Despite intense research, the mechanism of Cd2+ toxicity on photosynthesis is still elusive because of the multiplicity of the inhibitory effects and different barriers in plants. The quick Cd2+ uptake in Synechocystis PCC 6803 permits the direct interaction of cadmium with the photosynthetic machinery and allows the distinction between primary and secondary effects. We show that the CO2‐dependent electron transport is rapidly inhibited upon exposing the cells to 40 µm Cd2+ (50% inhibition in ~15 min). However, during this time we observe only symptoms of photosystem I acceptor side limitation and a build of an excitation pressure on the reaction centres, as indicated by light‐induced P700 redox transients, O2 polarography and changes in chlorophyll a fluorescence parameters. Inhibitory effects on photosystem II electron transport and the degradation of the reaction centre protein D1 can only be observed after several hours, and only in the light, as revealed by chlorophyll a fluorescence transients, thermoluminescence and immunoblotting. Despite the marked differences in the manifestations of these short‐ and long‐term effects, they exhibit virtually the same Cd2+ concentration dependence. These data strongly suggest a cascade mechanism of the toxic effect, with a primary effect in the dark reactions.  相似文献   
5.
6.
7.
8.
9.
10.
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号