首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2005年   3篇
  1998年   3篇
  1997年   1篇
  1983年   1篇
  1975年   1篇
  1964年   2篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Cytoplasmic filaments and cellular wound healing in amoeba proteus   总被引:4,自引:4,他引:0       下载免费PDF全文
The flexibility and self-healing properties of animal cell surface membranes are well known. These properties have been best exploited in various micrurgical studies on living cells (2, 3), especially in amoebae (7, 20). During nuclear transplantation in amoebae, the hole in the membrane through which a nucleus passes can have a diameter of 20-30 μm, and yet such holes are quickly sealed, although some cytoplasm usually escapes during the transfer. While enucleating amoebae in previous studies, we found that if a very small portion of a nucleus was pushed through the membrane and exposed to the external medium, the amoeba expelled such a nucleus on its own accord. When this happened, a new membrane appeared to form around the embedded portion of the nucleus and no visible loss of cytoplasm occurred during nuclear extrusion. In the present study, we examined amoebae that were at different stages of expelling partially exposed nuclei, to follow the sequence of events during the apparent new membrane formation. Unexpectedly, we found that a new membrane is not formed around the nucleus from inside but a hole is sealed primarily by a constriction of the existing membrane, and that cytoplasmic filaments are responsible for the prevention of the loss of cytoplasm.  相似文献   
2.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
3.
Dehnert M  Helm WE  Hütt MT 《Gene》2005,345(1):81-90
We study short-range correlations in DNA sequences with methods from information theory and statistics. We find a persisting degree of identity between the correlation patterns of different chromosomes of a species. Except for the case of human and chimpanzee inter-species differences in this correlation pattern allow robust species distinction: in a clustering tree based upon the correlation curves on the level of individual chromosomes distinct clusters for the individual species are found. This capacity of distinguishing species persists, even when the length of the underlying sequences is drastically reduced. In comparison to the standard tool for studying symbol correlations in DNA sequences, namely the mutual information function, we find that an autoregressive model for higher order Markov processes significantly improves species distinction due to an implicit subtraction of random background.  相似文献   
4.
5.
Hypoxia impairs metabolic functions by decreasing activity and expression of ATP-consuming processes. To separate hypoxia from systemic effects, we tested whether hypoxia at high altitude affects basal and PMA-stimulated leukocyte metabolism and how this compares to acute (15 min) and 24 h of in vitro hypoxia. Leukocytes were prepared at low altitude and ~24 h after arrival at 4559 m. Mitochondrial oxygen consumption (JO?) was measured by respirometry, oxygen radicals by electron spin resonance spectroscopy, both at a Po? = 100 mmHg (JO?,???) and 20 mmHg (JO?,??). Acute hypoxia of leukocytes decreased JO? at low altitude. Exposure to high altitude decreased JO?,???, whereas JO?,?? was not affected. Acute hypoxia of low-altitude samples decreased the activity of complexes I, II, and III. At high altitude, activity of complexes I and III were decreased when measured in normoxia. Stimulation of leukocytes with PMA increased JO?,??? at low (twofold) and high altitude (five-fold). At both locations, PMA-stimulated JO? was decreased by acute hypoxia. Basal and PMA-stimulated reactive oxygen species (ROS) production were unchanged at high altitude. Separate in vitro experiments performed at low altitude show that ~75% of PMA-induced increase in JO? was due to increased extra-mitochondrial JO? (JO?(,res); in the presence of rotenone and antimycin A). JO?(,res) was doubled by PMA. Acute hypoxia decreased basal JO?(,res) by ~70% and PMA-stimulated JO?(,res) by about 50% in cells cultured in normoxia and hypoxia (1.5% O?; 24 h). Conversely, 24 h in vitro hypoxia decreased mitochondrial JO?,??? and JO?,??, extra-mitochondrial, basal, and PMA-stimulated JO? were not affected. These results show that 24 h of high altitude but not 24 h in vitro hypoxia decreased basal leukocyte metabolism, whereas PMA-induced JO? and ROS formation were not affected, indicating that prolonged high-altitude hypoxia impairs mitochondrial metabolism but does not impair respiratory burst. In contrast, acute hypoxia impairs respiratory burst at either altitude.  相似文献   
6.
The International Study of Asthma and Allergies in Childhood (ISAAC) Phase One showed large worldwide variations in the prevalence of symptoms of asthma, rhinoconjunctivitis and eczema, up to 10 to 20 fold between countries. Ecological analyses were undertaken with ISAAC Phase One data to explore factors that may have contributed to these variations, and are summarised and reviewed here.In ISAAC Phase One the prevalence of symptoms in the past 12 months of asthma, rhinoconjunctivitis and eczema were estimated from studies in 463,801 children aged 13 - 14 years in 155 centres in 56 countries, and in 257,800 children aged 6-7 years in 91 centres in 38 countries. Ecological analyses were undertaken between symptom prevalence and the following: Gross National Product per capita (GNP), food intake, immunisation rates, tuberculosis notifications, climatic factors, tobacco consumption, pollen, antibiotic sales, paracetamol sales, and outdoor air pollution.Symptom prevalence of all three conditions was positively associated with GNP, trans fatty acids, paracetamol, and women smoking, and inversely associated with food of plant origin, pollen, immunisations, tuberculosis notifications, air pollution, and men smoking. The magnitude of these associations was small, but consistent in direction between conditions. There were mixed associations of climate and antibiotic sales with symptom prevalence.The potential causality of these associations warrant further investigation. Factors which prevent the development of these conditions, or where there is an absence of a positive correlation at a population level may be as important from the policy viewpoint as a focus on the positive risk factors. Interventions based on small associations may have the potential for a large public health benefit.  相似文献   
7.
As coral reefs continue to degrade at an alarming rate, coral restoration efforts are increasing worldwide in an attempt to keep up with the global challenge of preserving these iconic ecosystems and the many services they provide. Coral gardening, the farming and outplanting of coral fragments, is a commonly applied practice; however, regional validation is required before upscaling can be considered. This study follows up from the successful farming of fragments in mid-water rope nurseries, by reporting on the successive outplanting of these corals. Specifically, 60 Pocillopora verrucosa colonies were outplanted to a degraded reef at different depths (1–12 m), applying three arrangement patterns (equal, clustered, random). After 1 year, 72% were considered successfully outplanted (alive and still attached), with detachment being the main challenge at wave-impacted shallow depths, while loose coral rubble caused more partial mortality at depth. Outplanting stress was observed at 1–6 m depth, but had no impact on survival or growth. Drupella sp. predation was most common at 3 m and 79% of colonies hosted mutualistic fauna after 1 year. Outplanting significantly benefitted the reef environment with a higher fish abundance and diversity along with a higher increase in natural coral cover (H = 2.7; 6.2% increase) in comparison with the control sites. These are promising results, considering that the restoration site has shown little natural recovery in the last few years (coral cover <4%). We hope that our findings provide useful initial insights and help to guide effective restoration practices in the Maldives.  相似文献   
8.
9.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   
10.

Introduction  

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoreactive T and B cells, which are believed to be secondary to deficient dendritic cells (DCs). However, whether DC abnormalities occur during their development in the bone marrow (BM) or in the periphery is not known.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号