首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   8篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   8篇
  2015年   10篇
  2014年   15篇
  2013年   12篇
  2012年   8篇
  2011年   14篇
  2010年   7篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有129条查询结果,搜索用时 31 毫秒
1.

We are proposing graphene (G)-based multilayered plasmonic spatial switch, operating at 10 THz. It is composed of hBN/Ag/hBN/G/hBN/G/hBN/SiO2/p+-Si multilayers. When a 10-THz transverse magnetic (TM)-polarized signal is normally incident upon the structure top surface, the nanoaperture devised in the Ag nanolayer, acting as a grating, excites surface plasmons at the top graphene micro-ribbons/hBN interface. These surface plasmons depending on the graphenes chemical potentials can be coupled to the lower-right or left graphene micro-ribbons and continue to propagate laterally towards the corresponding output port. Numerical simulations show that a change of ∆VG ≈ ± 2.7 V in the voltage, applied to the gated micro-ribbons, can modulate their chemical potentials sufficiently to switch the right (left) output port from ON (OFF) to OFF(ON) and vice versa. Besides its low power consumption, the switch ultra-small dimensions make it a potential spatial router suitable for THz-integrated circuit applications.

  相似文献   
2.
The atrial gland of the marine mollusk Aplysia californica contains several biologically active peptides that are thought to be important in reproductive function. In the present study, three novel peptides, which we named califin A, B, and C, were purified from extracts of atrial glands by high performance liquid chromatography, and their primary structures were determined. Each consists of a 36-residue subunit bound by a single disulfide bond to an 18-residue subunit. The large subunits differ from each other by one or two residues, whereas the small subunits are identical. The large subunits are 78-83% homologous to egg-laying hormone (ELH), a 36-residue peptide synthesized by the neuroendocrine bag cells of Aplysia. Like ELH, the califins excite LB and LC cells of the abdominal ganglion and cause egg laying when injected into sexually mature animals. Based on previously described DNA sequence data, each califin is likely to be derived from one of several precursor proteins that are encoded by members of the ELH gene family. Califin A is encoded on the peptide A precursor, and califin B may be encoded on the peptide B precursor. No gene encoding califin C has been sequenced. Because peptides A and B are also biologically active, the precursors encoding them and califins A and B are polyproteins. The possible role of atrial gland peptides as pheromones is discussed.  相似文献   
3.
Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell lineT1074, with IC50 value of 32.5±0.5μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.  相似文献   
4.
Muscarinic activation of tracheal smooth muscle (TSM) involves a M3AChR/heterotrimeric-G protein/NPR-GC coupling mechanism. G protein activators Mastoparan (MAS) and Mastoparan-7 stimulated 4- and 10-fold the NPR-GC respectively, being insensitive to PTX and antibodies against Gαi/o subfamily. Muscarinic and MAS stimulation of NPR-GC was blocked by antibodies against C-terminal of Gαq16, whose expression was confirmed by RT-PCR. However, synthetic peptides from C-terminal of Gαq15/16 stimulated the NPR-GC. Coupling of αq16 to M3AChR is supported by MAS decreased [3H]QNB binding, being abolished after M3AChR-4-DAMP-alkylation. Anti-i3M3AChR antibodies blocked the muscarinic activation of NPR-GC, and synthetic peptide from i3M3AChR (M3P) was more potent than MAS increasing GTPγ [35S] and decreasing the [3H]QNB activities. Coupling between NPR-GC and Gαq16 was evaluated by using trypsin-solubilized-fraction from TSM membranes, which displayed a MAS-sensitive-NPR-GC activity, being immunoprecipitated with anti-Gαq16, also showing an immunoreactive heterotrimeric-G-β -subunit. These data support the existence of a novel transducing cascade, involving Gαq16β γ coupling M3AChR to NPR-GC.  相似文献   
5.
Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.  相似文献   
6.

Background

A major hindrance to the development of high yielding biofuel feedstocks is the ability to rapidly assess large populations for fermentable sugar yields. Whilst recent advances have outlined methods for the rapid assessment of biomass saccharification efficiency, none take into account the total biomass, or the soluble sugar fraction of the plant. Here we present a holistic high-throughput methodology for assessing sweet Sorghum bicolor feedstocks at 10 days post-anthesis for total fermentable sugar yields including stalk biomass, soluble sugar concentrations, and cell wall saccharification efficiency.

Results

A mathematical method for assessing whole S. bicolor stalks using the fourth internode from the base of the plant proved to be an effective high-throughput strategy for assessing stalk biomass, soluble sugar concentrations, and cell wall composition and allowed calculation of total stalk fermentable sugars. A high-throughput method for measuring soluble sucrose, glucose, and fructose using partial least squares (PLS) modelling of juice Fourier transform infrared (FTIR) spectra was developed. The PLS prediction was shown to be highly accurate with each sugar attaining a coefficient of determination (R 2 ) of 0.99 with a root mean squared error of prediction (RMSEP) of 11.93, 5.52, and 3.23 mM for sucrose, glucose, and fructose, respectively, which constitutes an error of <4% in each case. The sugar PLS model correlated well with gas chromatography–mass spectrometry (GC-MS) and brix measures. Similarly, a high-throughput method for predicting enzymatic cell wall digestibility using PLS modelling of FTIR spectra obtained from S. bicolor bagasse was developed. The PLS prediction was shown to be accurate with an R 2 of 0.94 and RMSEP of 0.64 μg.mgDW-1.h-1.

Conclusions

This methodology has been demonstrated as an efficient and effective way to screen large biofuel feedstock populations for biomass, soluble sugar concentrations, and cell wall digestibility simultaneously allowing a total fermentable yield calculation. It unifies and simplifies previous screening methodologies to produce a holistic assessment of biofuel feedstock potential.
  相似文献   
7.
8.
9.
In a cross-sectional study, a total of 5381 slaughtered animals, namely 928 cattle, 243 buffaloes, 3765 sheep and 445 goats were inspected macroscopically for hydatid cysts in northwest Iran, with prevalence values of 38.3%, 11.9%, 74.4% and 20%, respectively, being recorded. Prevalences were higher in females compared with males, but a significant difference (P < 0.001) was only found in sheep and cattle. Most cases which were condemned were seen in the lungs of sheep (13.4%) indicating that sheep are the most important intermediate hosts for Echinococcus granulosus in this area.  相似文献   
10.
Zhou  Ju  Imani  Saber  Shasaltaneh  Marzieh Dehghan  Liu  Shuguang  Lu  Tao  Fu  Junjiang 《Molecular biology reports》2022,49(3):1799-1816
Background

Nigella sativa (N. sativa) exhibits anti-inflammatory, antioxidant, antidiabetic, antimetastatic and antinociceptive effects and has been used to treat dozens of diseases. Thymoquinone (TQ) is an important and active component isolated from N. sativa seeds. Inhibition of cancer-associated activating PIK3CA mutations is a new prospective targeted therapy in personalized metastatic breast cancer (MBC). TQ is reported to be an effective inhibitor of the PI3K/Akt1 pathway in MBC. This study aimed to evaluate the in vitro antitumor effect of TQ in the context of two PIK3CA hotspot mutations, p. H1047R and p. H1047L.

Methods and results

Molecular dynamics, free energy landscapes and principal component analyses were also used to survey the mechanistic effects of the p. H1047R and p. H1047L mutations on the PI3K/Akt1 pathway. Our findings clearly confirmed that the p. H1047R and p. H1047L mutants could reduce the inhibitory effect of ΔNp63α on the kinase domain of PIK3CA, resulting in increased activity of PI3K downstream signals. Structurally, the partial disruption of the interaction between the ΔNp63α DNA binding domain and the PIK3CA kinase domain at residues 114–359 and 797–1068 destabilizes the conformation of the activation loop and modifies the PIK3CA/ΔNp63α complex. Alongside these structural changes, we found that TQ treatment resulted in high PI3K/Akt1 pathway inhibition in p. H1047R and p. H1047L-expressing cells versus wild-type cells.

Conclusions

These two PIK3CA hotspot mutations therefore not only contribute to tumor progression in patients with MBC but may also serve as targets for the development of novel small molecule therapeutic strategies.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号