首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   2篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   5篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
Irradiation of the mitotic spindle in living Nephrotoma suturalis (Loew) spermatocytes with an ultraviolet microbeam of controlled dose produced a localized area of reduced birefringence in the spindle fibers. The birefringence was reduced only at the site irradiated, and only on the spindle fibers irradiated. Areas of reduced birefringence, whether produced during metaphase or during anaphase, immediately began to move toward the pole in the direction of the chromosomal fiber, even though the associated chromosomes did not necessarily move poleward. Both the poleward and the chromosomal sides of the area of reduced birefringence on each chromosomal fiber moved poleward with about the same, constant, velocity. On the average, the areas of reduced birefringence moved poleward with about the same velocities as did the chromosomes during anaphase. The area of reduced birefringence was interpreted as a region in which most, though not necessarily all, of the previously oriented material was disoriented by the irradiation. The poleward movement of the areas of reduced birefringence indicates that the spindle fibers are not static, nonchangeable structures. The poleward movement possibly represents the manner in which the birefringent spindle fibers normally become organized. All the experiments reported were on primary spermatocytes which completed the second meiotic division subsequent to the experimentation. Since both the irradiated and the control cells completed the two meiotic divisions, the movement and irradiation effects studied in the first division were nondegenerative.  相似文献   
2.
Summary We irradiated chromosomal spindle fibres in crane-fly spermatocytes with an ultraviolet microbeam of 270 nm wavelength light with total energies near those that cause actin filaments in myofibrils to depolymerize; after irradiation we stained the cells with rhodamine-labelled phalloidin and with anti-tubulin antibodies. In some cells, the irradiation reduced both phalloidin and tubulin staining of the chromosomal spindle fibres; in other cells, the irradiations reduced phalloidin staining but not tubulin staining; in yet other cells, the irradiations reduced tubulin staining but not phalloidin staining. In all irradiated cells in which phalloidin staining was reduced in the irradiated areas phalloidin staining also was reduced poleward from the irradiated areas. These results show that phalloidin staining of chromosomal spindle fibres is not dependent on the presence of kinetochore microtubules, and, therefore, that actin filaments are present in the spindle fibres in vivo. We suggest that actin filaments present in spindle fibres in vivo may be involved in causing chromosome movements during anaphase.  相似文献   
3.
4.
Univalent sex chromosomes in crane-fly spermatocytes have kinetochore spindle fibres to each spindle pole (amphitelic orientation) from metaphase throughout anaphase. The univalents segregate in anaphase only after the autosomes approach the poles. As each univalent moves in anaphase, one spindle fibre shortens and the other spindle fibre elongates. To test whether the directionality of force production is fixed at anaphase, that is, whether one spindle fibre can only elongate and the other only shorten, we cut univalents in half with a laser microbeam, to create two chromatids. In both sex-chromosome metaphase and sex-chromosome anaphase, the two chromatids that were formed moved to opposite poles (to the poles to which their fibre was attached) at speeds about the same as autosomes, much faster than the usual speeds of univalent movements. Since the chromatids moved to the pole to which they were attached, independent of the direction to which the univalent as a whole was moving, the spindle fibre that normally elongates in anaphase still is able to shorten and produce force towards the pole when allowed (or caused) to do so.  相似文献   
5.
6.
Single nucleotide polymorphisms (SNPs) play a prominent role in modern genetics. Current genotyping technologies such as Sequenom iPLEX, ABI TaqMan and KBioscience KASPar made the genotyping of huge SNP sets in large populations straightforward and allow the generation of hundreds of thousands of genotypes even in medium sized labs. While data generation is straightforward, the subsequent data conversion, storage and quality control steps are time-consuming, error-prone and require extensive bioinformatic support. In order to ease this tedious process, we developed SNPflow. SNPflow is a lightweight, intuitive and easily deployable application, which processes genotype data from Sequenom MassARRAY (iPLEX) and ABI 7900HT (TaqMan, KASPar) systems and is extendible to other genotyping methods as well. SNPflow automatically converts the raw output files to ready-to-use genotype lists, calculates all standard quality control values such as call rate, expected and real amount of replicates, minor allele frequency, absolute number of discordant replicates, discordance rate and the p-value of the HWE test, checks the plausibility of the observed genotype frequencies by comparing them to HapMap/1000-Genomes, provides a module for the processing of SNPs, which allow sex determination for DNA quality control purposes and, finally, stores all data in a relational database. SNPflow runs on all common operating systems and comes as both stand-alone version and multi-user version for laboratory-wide use. The software, a user manual, screenshots and a screencast illustrating the main features are available at http://genepi-snpflow.i-med.ac.at.  相似文献   
7.
Single anaphase chromosomes (in crane-fly spermatocytes) moved backwards after double irradiations with an ultraviolet light (UV) microbeam, first of the interzone and then of a kinetochore: the chromosome irradiated at the kinetochore moved backwards rapidly, across the equator and into the other half-spindle. High irradiation doses at the kinetochore were required to induce backward movement. Single irradiations of kinetochores or interzones were ineffective in inducing backward movements.  相似文献   
8.
9.
Summary The Pac-Man hypothesis suggests that poleward movement of chromosomes during anaphase A is brought about by: disassembly of kinetochore microtubules (MTs) at the kinetochore; generation of the poleward force exclusively at or very close to the kinetochore; and the required energy coming from coupled disassembly of these MTs. This model has become widely accepted and cited as the sole or major mechanism of anaphase A. Rarely acknowledged are several significant phenomena that refute some or all of these postulates. We summarise these anomalies as follows: poleward movement of chromosomes occurring without insertion of any MTs at the kinetochore; anaphase shortening of kinetochore fibres in spindles entirely devoid of chromosomes and, presumably, kinetochores; continued movement of chromosomes while their severed kinetochore stub elongated poleward after treatment with UV microbeams; and fluxing of tubulin subunits through kinetochore MTs during anaphase A, indicating that during anaphase, kinetochore MTs disassemble partly or solely at the poles.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   
10.

Background

Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases.

Methods

We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base).

Results

We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases.

Conclusions

We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号