首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   6篇
  294篇
  2024年   2篇
  2023年   2篇
  2022年   8篇
  2021年   17篇
  2020年   11篇
  2019年   12篇
  2018年   19篇
  2017年   8篇
  2016年   11篇
  2015年   17篇
  2014年   23篇
  2013年   25篇
  2012年   18篇
  2011年   24篇
  2010年   16篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有294条查询结果,搜索用时 0 毫秒
1.
An investigation of Dodonaea viscosa afforded a new flavonoid having an isoprenoid side chain along with the seven known flavonoids: 5-hydroxy-3,6,  相似文献   
2.
3.
4.
Recent report from this lab has shown role of Rac2 in the translocation of inducible nitric oxide synthase (iNOS) to the phagosomal compartment of polymorphonuclear leukocytes (PMNs) following phagocytosis of beads. This study was undertaken to further assess the status and role of tetrahydrobiopterin (BH4), a redox-sensitive cofactor, L-arginine, and the substrate of nitric oxide synthase (NOS) in sustained nitric oxide (˙NO) production in killing of phagocytosed microbes (Escherichia coli) by human PMNs. Time-dependent study revealed consistent NO and reactive oxygen species (ROS) production in the PMNs following phagocytosis of beads. In addition, levels of L-arginine and BH4 were maintained or increased simultaneously to support the enzymatic activity of NOS in the bead activated PMNs. Moreover, translocation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits along with iNOS was reconfirmed in the isolated phagosomes. We demonstrate that increase in the level of NO was supported by L-arginine and BH4 to kill E. coli, by using PMNs from NOS2?/? mice, human PMNs treated with biopterin inhibitor, N-acetyl serotonin (NAS), or by suspending human PMNs in L-arginine deficient medium. Altogether, this study demonstrates that following phagocytosis, sustained. NO production in the PMNs was well-maintained by redox sensitive cofactor, BH4 and substrate, and L-arginine to enable microbial killing. Further results suggest NO production in the human PMNs, along with ROS and myeloperoxidase (MPO) is important to execute antimicrobial activity.  相似文献   
5.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   
6.
The downstream processing of recombinant streptokinase (rSK), a protein used for dissolution of blood clots has been investigated employing Escherichia coli inclusion bodies obtained after direct chemical extraction followed by expanded bed adsorption chromatography (EBAC). Streptokinase was over-expressed using high cell density (final OD(600)=40) culture of recombinant E. coli, and an SK protein concentration of 1080 mg l(-1) was achieved. The wet cell pellet after centrifugation was re-suspended in 8M urea containing buffer resulting in direct extraction of almost 97% of cellular proteins into solution. Compared to mechanical disruption using sonication, the direct extraction helped in simultaneous cell lysis and inclusion body (IB) solubilization in a single integrated step. The post-extraction solution containing cell debris and cellular proteins was diluted and directly loaded on to an EBAC column containing Streamline phenyl, without clarification. By passing the solution four times through the column and using 1M NaCl during loading, 82.7% rSK activity could be recovered in the 10mM sodium phosphate buffer used for elution. A 3-fold increase in specific activity of rSK, from 0.18 x 10(5) in cell lysate to 0.53 x 10(5)IU mg(-1) resulted after this step. rSK was further purified to near-homogeneity (specific activity=0.96 x 10(5)IU mg(-1)) by a subsequent ion-exchange step operated in packed bed mode. An overall downstream recovery of 63% rSK was achieved after EBAC and ion exchange chromatography. The paper thus describes the purification of rSK using a three-step regime involving simple, efficient and highly facile steps.  相似文献   
7.
Biological Trace Element Research - Vanadium (V) has not been elucidated as an essential mineral in ruminants, though in lower organisms and rat model, its role is well known as insulin—a...  相似文献   
8.
The role of oxidative stress is often attributed in environmental renal diseases. Isocyanates, a ubiquitous chemical group with diverse industrial applications, are known to undergo bio-transformation reactions upon accidental and occupational exposure. This study delineates the role of isocyanate-mediated mitochondrial oxidative stress in eliciting chromosomal instability in cultured human kidney epithelial cells. Cells treated with 0.005 µM concentration of methyl isocyanate displayed morphological transformation and stress-induced senescence. Along the time course, an increase in DCF fluorescence indicative of oxidative stress, depletion of superoxide dismutase (SOD) and glutathione reductase (GR) and consistent accumulation of 8-oxo-dG were noticed. Thus, endogenous oxidative stress resulted in aberrant expression of p53, p21, cyclin E and CDK2 proteins, suggestive of deregulated cell cycle, chromosomal aberrations, centromeric amplification, aneuploidy and genomic instability.  相似文献   
9.
Molecular Biology Reports - The liver has a solid inbuilt antioxidant defense system to regulate oxidative stress. However, exposure to an excessive level of ROS causes liver injury. This study...  相似文献   
10.
2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号