首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   5篇
  2021年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
排序方式: 共有39条查询结果,搜索用时 484 毫秒
1.
2.
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shorter, or longer, diamines, respectively. MTSEA+ modification of engineered cysteines in the inner cavity reduces rectification, but modification below the inner cavity slows spermine entry and exit, without changing steady-state rectification. The data provide a coherent explanation of classical strong rectification as the result of polyamine block in the inner cavity and selectivity filter.  相似文献   
3.
4.
Our earlier studies have shown that channel activity of Kir2 subfamily of inward rectifiers is strongly suppressed by the elevation of cellular cholesterol. The goal of this study is to determine whether cholesterol suppresses Kir channels directly. To achieve this goal, purified prokaryotic Kir (KirBac1.1) channels were incorporated into liposomes of defined lipid composition, and channel activity was assayed by 86Rb+ uptake. Our results show that 86Rb+ flux through KirBac1.1 is strongly inhibited by cholesterol. Incorporation of 5% (mass cholesterol/phospholipid) cholesterol into the liposome suppresses 86Rb+ flux by >50%, and activity is completely inhibited at 12–15%. However, epicholesterol, a stereoisomer of cholesterol with similar physical properties, has significantly less effect on KirBac-mediated 86Rb+ uptake than cholesterol. Furthermore, analysis of multiple sterols suggests that cholesterol-induced inhibition of KirBac1.1 channels is mediated by specific interactions rather than by changes in the physical properties of the lipid bilayer. In contrast to the inhibition of KirBac1.1 activity, cholesterol had no effect on the activity of reconstituted KscA channels (at up to 250 μg/mg of phospholipid). Taken together, these observations demonstrate that cholesterol suppresses Kir channels in a pure protein-lipid environment and suggest that the interaction is direct and specific.Inwardly rectifying potassium channels (Kir) are known to play critical roles in the regulation of multiple cellular functions including membrane excitability, heart rate, and vascular tone (13). Kir channels are classified into seven subfamilies (Kir1–7) identified by distinct biophysical properties and sensitivities to different regulators (2). Our earlier studies have shown that Kir2 channels, one of the major subfamilies of Kir that are responsible for maintaining membrane potential in a variety of cell types, are strongly suppressed by the elevation of membrane cholesterol (4, 5). Cholesterol-induced suppression of Kir2 was first observed in aortic endothelial cells (4), in which resting K+ conductance is dominated by Kir2.1 and Kir2.2 channels (6), and then when channels were heterologously expressed in Chinese hamster ovary cells (5, 7). Furthermore, the same effect was observed ex vivo in endothelial cells and bone marrow-derived progenitor cells isolated from hypercholesterolemic pigs (8, 9).In terms of the mechanism, the first insights came from comparing the effects of cholesterol and of its chiral analogue, epicholesterol. Although the two sterols are known to have almost identical effects on the biophysical properties of the lipid bilayer (10, 11), their impact on Kir activity is completely different; partial substitution of endogenous cholesterol with epicholesterol resulted in significant increase in Kir current in endothelial cells (4). These observations suggest that specific sterol-protein interactions may be involved in the cholesterol sensitivity of Kir2 channels. However, in the complex environment of the plasma membrane, cholesterol may interact not only with the channels themselves but also with other proteins, which in turn may regulate the activity of the channels. In the cellular environment, therefore, it is impossible to discriminate between direct channel-cholesterol interactions and indirect effects. Moreover, it is impossible to define the actual concentrations of cholesterol in any given membrane compartment. To quantitatively test direct cholesterol-protein interactions, it is necessary to examine sensitivity of pure Kir channels to membrane cholesterol in a membrane of defined lipid composition. To date, only the cytoplasmic domains of several mammalian Kir channels have been purified (Kir2.1, Kir3.1, and Kir3.2) (1215). We therefore concentrate in this study on the effect of cholesterol on two bacterial K+ channels that differ in the level of their homology to mammalian Kir channels, KirBac1.1 and KcsA. KirBac channels have high sequence homology with mammalian Kirs (e.g. 52% homology between KirBac1.1 and Kir2.1; see Fig. 7A) and have now been extensively used as structural models of mammalian Kir channels (3, 16, 17). The sequence similarity between KcsA and mammalian K channels lies mainly in the transmembrane domain (18). The overall sequence homology of KcsA to mammalian Kir channels is relatively low (e.g. 22% homology between KcsA and Kir2.1; see Fig. 7A), with an entirely different cytoplasmic domain structure.Open in a separate windowFIGURE 7.Cholesterol has no effect on KcsA-mediated 86Rb+ uptake. A, time courses of 86Rb+ uptake into liposomes reconstituted with 50 μg of cholesterol/mg of PL and as compared with liposomes containing no cholesterol (control). Both batches of liposomes contained 5 μg of KcsA/mg of PL. Blank liposomes contain no protein. The points represent averages of three independent experiments (means ± S.D.). B, normalized time courses of 86Rb+ uptake in liposomes incorporating 50, 150, and 250 μg of cholesterol/mg of PL. C, maximal uptake of 86Rb+ after 240 s in liposomes containing 10, 25, 50, 100, 150, 200, and 250 μg of cholesterol/mg of PL normalized to control (means ± S.D. of 3–5 independent experiments; *, p < 0.05). DPM, disintegrations per minute.Here we show that, similarly to Kir2 channels, prokaryotic Kir channels incorporated into liposomes are strongly suppressed by an increase in membrane cholesterol. Furthermore, the sensitivity of prokaryotic Kir to cholesterol is stereo-selective to cholesterol optical analogues. In contrast, KscA channels are insensitive to membrane cholesterol. These observations suggest that cholesterol directly suppresses Kir channels.  相似文献   
5.
Potassium channels are tetrameric proteins that mediate K+-selective transmembrane diffusion. For KcsA, tetramer stability depends on interactions between permeant ions and the channel pore. We have examined the role of pore blockers on the tetramer stability of KirBac1.1. In 150 mm KCl, purified KirBac1.1 protein migrates as a monomer (∼40 kDa) on SDS-PAGE. Addition of Ba2+ (K1/2 ∼ 50 μm) prior to loading results in an additional tetramer band (∼160 kDa). Mutation A109C, at a residue located near the expected Ba2+-binding site, decreased tetramer stabilization by Ba2+ (K1/2 ∼ 300 μm), whereas I131C, located nearby, stabilized tetramers in the absence of Ba2+. Neither mutation affected Ba2+ block of channel activity (using 86Rb+ flux assay). In contrast to Ba2+, Mg2+ had no effect on tetramer stability (even though Mg2+ was a potent blocker). Many studies have shown Cd2+ block of K+ channels as a result of cysteine substitution of cavity-lining M2 (S6) residues, with the implicit interpretation that coordination of a single ion by cysteine side chains along the central axis effectively blocks the pore. We examined blocking and tetramer-stabilizing effects of Cd2+ on KirBac1.1 with cysteine substitutions in M2. Cd2+ block potency followed an α-helical pattern consistent with the crystal structure. Significantly, Cd2+ strongly stabilized tetramers of I138C, located in the center of the inner cavity. This stabilization was additive with the effect of Ba2+, consistent with both ions simultaneously occupying the channel: Ba2+ at the selectivity filter entrance and Cd2+ coordinated by I138C side chains in the inner cavity.Potassium channels are expressed in many cell types and are key players in a wide range of physiological processes. One subset of potassium channels, the inward-rectifying potassium (Kir) channels, are functionally blocked by cytosolic cations such as Mg2+ and polyamines and contribute to the regulation of membrane excitability, cardiac rhythm, vascular tone, insulin release, and salt flow across epithelia (13). There are seven subfamilies of eukaryotic Kir channel genes. Among them, Kir1 encodes weak rectifiers, whereas Kir2 and Kir5 encode strong rectifiers; Kir3 encodes G-protein-regulated channels; and Kir6 encodes ATP-sensitive channels (4). Recently, a related bacterial family of genes (KirBac) has been identified (5, 6), and in 2003, the first member (KirBac1.1) was crystallized (7), providing a structural model for eukaryotic channels.The crystal structure of KirBac1.1 revealed a tetrameric pore structure similar to that seen in KcsA and a novel cytoplasmic domain (7, 8). The selectivity filter of both KirBac1.1 and KcsA consists of an extremely conserved pore loop followed by a central cavity, forming a transmembrane ion-selective permeation pore (7, 8). The linear arrangement of five oxygen rings (four from carbonyl oxygens and one from a Thr side chain) in the selectivity filter coordinates with ions, compensating for the energy barrier caused by K+ dehydration, thereby facilitating the rapid diffusion of K+ across the membrane (812). Two-thirds of the KirBac1.1 amino acid residues constitute the cytosolic domain that is highly conserved among the Kir subfamilies and form the cytosolic vestibule (1316), which, together with the transmembrane pore, generates an 88-Å-long ion conduction pore (7).The prototypic potassium channel KcsA exists very stably as a tetramer, even in the harsh conditions of SDS-PAGE (17). In addition to protein-protein interaction between monomers, protein-lipid and protein-ion interactions play important roles in stabilizing the KcsA tetramer (1720). The selectivity filter of KcsA, coordinated with K+ ions, can serve as a bridge between the four monomers to maintain the structure of the selectivity filter and the tetrameric architecture of the channel as a whole (11, 21). Blocking ions, such as Ba2+, also act as strong stabilizers (17). In the crystal structure of KcsA, Ba2+ occupies a site equivalent to the S4 K+-binding site within the selectivity filter (22). Other permeant ions (Rb+, Cs+, Tl+, and NH+4) and strong blockers (Sr2+) can also contribute to the thermostability of the KcsA tetramer in SDS-PAGE (17). In contrast, impermeant ions such as Na+ and Li+ or weak blockers such as Mg2+ tend to destabilize the KcsA tetramer (17, 19).Like KcsA, KirBac1.1 purified using decylmaltoside or tridecylmaltoside is active and presumably stable as a tetramer in mild detergent solutions. However, in SDS-PAGE, KirBac1.1 migrates exclusively as a monomer (23). Because KcsA and KirBac1.1 are structurally similar in the transmembrane region of the pore, we hypothesized that permeant and blocking ions would also affect KirBac1.1 tetramer stability in SDS-PAGE. In the present work, the effects of blocking ions such as Ba2+ and Mg2+ on KirBac1.1 tetramer stability were examined to provide insight to the physical nature of their interaction with KirBac1.1, particularly in the selectivity filter and TM2 cavity. The data reveal important differences in the nature of the interaction of Mg2+ and Ba2+ with the channel as well as provide previously unavailable evidence for the nature of Cd2+ coordination within the channel.  相似文献   
6.
7.
Molecular dynamics simulations were carried out for the mutant oseltamivir-NA complex, to provide detailed information on the oseltamivir-resistance resulting from the H274Y mutation in neuraminidase (NA) of avian influenza H5N1 viruses. In contrast with a previous proposal, the H274Y mutation does not prevent E276 and R224 from forming the hydrophobic pocket for the oseltamivir bulky group. Instead, reduction of the hydrophobicity and size of pocket in the area around an ethyl moiety at this bulky group were found to be the source of the oseltamivir-resistance. These changes were primarily due to the dramatic rotation of the hydrophilic –COO group of E276 toward the ethyl moiety. In addition, hydrogen-bonding interactions with N1 residues at the -NH3 + and -NHAc groups of oseltamivir were replaced by a water molecule. The calculated binding affinity of oseltamivir to NA was significantly reduced from −14.6 kcal mol−1 in the wild-type to −9.9 kcal mol−1 in the mutant-type.  相似文献   
8.
The traceless Staudinger ligation has recently found various applications in the field of peptide synthesis and modification, including immobilization and cyclization strategies. In this report, we utilize the traceless Staudinger ligation in the formation of amide bonds, which allows the acquisition of acylated aminosugars and peptides as well as the cyclization of peptides. A key element in these synthetic procedures is the use of a borane-protected phosphinomethanethiol, which is demonstrated to be prone towards oxidation in its unprotected form, during the synthesis of phosphinothioesters. In combination with acidic and basic deprotection strategies for the borane-protected phosphinothioesters, amide bonds can be formed in the presence of azides in moderate to good overall yields.  相似文献   
9.
Oecophylla ants are utilized for biological control in fruit plantations in Australia and Asia. In Asia, queen larvae and alates are sold on commercial markets for human and animal consumption. This double utilization has induced an increasing interest in the domestication of these ants, but attempts to rear live colonies have been hindered partly by the length of time it takes from the founding of a colony until it can be utilized commercially. Early growth of a colony may be increased if ants from other colonies are adopted. The present experiments show that Oecophylla smaragdina larvae transplanted from other colonies are readily tolerated by non-nestmate workers and are reared to imagos. These results are fundamental for the future domestication of Oecophylla and elucidate the need for further studies of chemical nestmate recognition.  相似文献   
10.
Many eukaryotic channels, transporters and receptors are activated by phosphatidyl inositol bisphosphate (PIP(2)) in the membrane, and every member of the eukaryotic inward rectifier potassium (Kir) channel family requires membrane PIP(2) for activity. In contrast, a bacterial homolog (KirBac1.1) is specifically inhibited by PIP(2). We speculate that a key evolutionary adaptation in eukaryotic channels is the insertion of additional linkers between transmembrane and cytoplasmic domains, revealed by new crystal structures, that convert PIP(2) inhibition to activation. Such an adaptation may reflect a novel evolutionary drive to protein structure, and that was necessary to permit channel function within the highly negatively charged membranes that evolved in the eukaryotic lineage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号