首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   17篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   13篇
  2014年   17篇
  2013年   10篇
  2012年   26篇
  2011年   24篇
  2010年   17篇
  2009年   8篇
  2008年   24篇
  2007年   27篇
  2006年   13篇
  2005年   16篇
  2004年   22篇
  2003年   11篇
  2002年   15篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1991年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1974年   2篇
  1973年   1篇
  1970年   3篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1962年   1篇
  1960年   1篇
  1940年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
1.
The green sulfur bacterium, Chlorobium vibrioforme, synthesizes the tetrapyrrole precursor, -aminolevulinic acid (ALA), from glutamate via the RNA-dependent five-carbon pathway. A 1.9-kb clone of genomic DNA from C. vibrioforme that is capable of transforming a glutamyl-tRNA reductase-deficient, ALA-dependent, hemA mutant of Escherichia coli to prototrophy was sequenced. The transforming C. vibrioforme DNA has significant sequence similarity to the E. coli, Salmonella typhimurium, and Bacillus subtilis hemA genes and contains a 1245 base open reading frame that encodes a 415 amino acid polypeptide with a calculated molecular weight of 46174. This polypeptide has over 28% amino acid identity with the polypeptides deduced from the nucleic acid sequences of the E. coli, S. typhimurium, and B. subtilis hemA genes. No sequence similarity was detected, at either the nucleic acid or the peptide level, with the Rhodobacter capsulatus or Bradyrhizobium japonicum hemA genes, which encode ALA synthase, or with the S. typhimurium hemL gene, which encodes glutamate-1-semialdehyde aminotransferase. These results establish that hemA encodes glutamyl-tRNA reductase in species that use the five-carbon ALA biosynthetic pathway. A second region of the cloned DNA, located downstream from the hemA gene, has significant sequence similarity to the E. coli and B. subtilis hemC genes. This region contains a potential open reading frame that encodes a polypeptide that has high sequence identity to the deduced E. coli and B. subtilis HemC peptides. hemC encodes the tetrapyrrole biosynthetic enzyme, porphobilinogen deaminase, in these species. Preliminary evidence was obtained for the existence of a 3.0-kb polycistronic meassge that includes the hemA sequence, in exponentially growing C. vibrioforme cells. Results of condon usage analysis for the C. vibrioforme hemA gene indicate that green sulfur bacteria are more closely related to purple nonsulfur bacteria than to enteric bacteria. Sequences corresponding to a polyadenylation signal and a poly(A) attachment site were found immediately downstream from the 3 end of the hemA open reading frame.  相似文献   
2.

Introduction

Research in India has extensively examined the factors associated with non-adherence to antiretroviral therapy (ART) with limited focus on examining the relationship between adherence to ART regimen and survival status of HIV infected patients. This study examines the effect of optimal adherence to ART on survival status of HIV infected patients attending ART centers in Jharkhand, India.

Materials and Methods

Data from a cohort of 239 HIV infected individuals who were initiated ART in 2007 were compiled from medical records retrospectively for 36 months. Socio-demographic characteristics, CD4 T cell count, presence of opportunistic infections at the time of ART initiation and ART regimen intake and survival status was collected periodically. Optimal adherence was assessed using pill count methods; patients who took <95% of the specified regimens were identified as non-adherent. Cox-proportional hazard model was used to determine the relative hazards of mortality.

Results

More than three-fourths of the patients were male, on an average 34 year old and median CD4 T cell count was 118 cells/cmm at the time of ART registration. About 57% of the patients registered for ART were found to be adherent to ART. A total of 104 patients died in 358.5 patient-years of observation resulting in a mortality rate of 29 per 100 patient-years (95% confidence interval (CI): 23.9–35.2) and median survival time of 6.5 months (CI: 2.7–10.9). The mortality rate was higher among patients who were non-adherent to ART (64.5, CI: 50.5–82.4) than who were adherent (15.4, CI: 11.3–21.0). The risk of mortality was fourfold higher among individuals who were non-adherent to ART than who were adherent (Adjusted hazard ratio: 3.9, CI: 2.6–6.0).

Conclusion

Adherence to ART is associated with a higher chance of survival of HIV infected patients, ascertaining the need for interventions to improve the ART adherence and early initiation of ART.  相似文献   
3.
The Wnt/β-catenin pathway controls developmental processes and homeostasis; however, abnormal activation of this pathway has been linked to several human diseases. Recent reports have demonstrated regulation of platelet function by canonical and non-canonical Wnt signalling. Platelet aggregation plays a crucial role in haemostasis and thrombosis. Here we report for the first time that, induction of sustained aggregation of platelets by a strong agonist in the presence of calcium was associated with nearly complete proteolysis of β-catenin, which was abrogated upon depletion of calcium from platelet suspension. β-catenin cleavage was disallowed in absence of aggregation, thus implicating integrin αIIbβ3 engagement in β-catenin proteolysis. Degradation of β-catenin was blocked partially by inhibitors of either proteasome or calpain and completely when cells were exposed to both the inhibitors. Protein kinase C inhibition, too, abolished β-catenin degradation. Thus activities of proteasome, calpain and protein kinase C regulate stabilization of β-catenin in aggregated human platelets.  相似文献   
4.
Lipophilic chalcones and their conformationally restricted analogues were synthesized and evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv strain. Compounds 16, 24, 25a and 25c were found to be active MIC at 60, 30, 3.5 and 7.5 μg-mL?1. In vitro cytotoxicity of compounds 16, 24, 25a, 25c and 26 in non-cancerous human epithelial kidney cell line (HEK-293) showed that most active compound 25a was approximately 2.85 times selective towards tubercular versus healthy cells whereas compound 24 was found to be 16 times selective.  相似文献   
5.
6.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), one of the crucial pro-angiogenic factors, functions as a potent inhibitor of endothelial cell (EC) apoptosis. Previous progress has been made towards delineating the VPF/VEGF survival signaling downstream of the activation of VEGFR-2. Here, we seek to define the function of NRP-1 in VPF/VEGF-induced survival signaling in EC and to elucidate the concomitant molecular signaling events that are pivotal for our understanding of the signaling of VPF/VEGF. Utilizing two different in vitro cell culture systems and an in vivo zebrafish model, we demonstrate that NRP-1 mediates VPF/VEGF-induced EC survival independent of VEGFR-2. Furthermore, we show here a novel mechanism for NRP-1-specific control of the anti-apoptotic pathway in EC through involvement of the NRP-1-interacting protein (NIP/GIPC) in the activation of PI-3K/Akt and subsequent inactivation of p53 pathways and FoxOs, as well as activation of p21. This study, by elucidating the mechanisms that govern VPF/VEGF-induced EC survival signaling via NRP-1, contributes to a better understanding of molecular mechanisms of cardiovascular development and disease and widens the possibilities for better therapeutic targets.  相似文献   
7.
Cell cultures of Asian pear (Pyrus pyrifolia) are known to produce benzoate‐derived biphenyl phytoalexins upon elicitor treatment. Although the downstream pathway for biphenyl phytoalexin biosynthesis is almost known, the upstream route of benzoic acid biosynthesis in pear has not been completely elucidated. In the present work, we report benzaldehyde synthase (BS) activity from yeast extract‐treated cell suspension cultures of P. pyrifolia. BS catalyzes the in vitro conversion of trans‐cinnamic acid to benzaldehyde using a non‐oxidative C2‐side chain cleavage mechanism. The enzyme activity was strictly dependent on the presence of a reducing agent, dithiothreitol being preferred. C2‐side chain shortening of the cinnamic acid backbone resembled the mechanisms catalyzed by 4‐hydroxybenzaldehyde synthase (HBS) activity in Vanilla planifolia and salicylaldehyde synthase (SAS) activity in tobacco and apple cell cultures. A basal BS activity was also observed in the non‐elicited cell cultures. Upon yeast extract‐treatment, a 13‐fold increase in BS activity was observed when compared to the non‐treated control cells. Moreover, feeding of the cell cultures with trans‐cinnamic acid, the substrate for BS, resulted in an enhanced level of noraucuparin, a biphenyl phytoalexin. Comparable accumulation of noraucuparin was observed upon feeding of benzaldehyde, the BS product. The preferred substrate for BS was found to be trans‐cinnamic acid, for which the apparent Km and Vmax values were 0.5 mM and 50.7 pkat mg?1 protein, respectively. Our observations indicate the contribution of BS to benzoic acid biosynthesis in Asian pear via the CoA‐independent and non‐β‐oxidative route.  相似文献   
8.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   
9.
Current clinical perspectives on myocardial angiogenesis   总被引:1,自引:0,他引:1  
Currently accepted modalities of treatment for atherosclerotic coronary artery disease (CAD) include pharmacological therapy, and revascularization with either bypass surgery or percutaneous coronary intervention (PCI). Similarly, conventional treatment of congestive heart failure (HF) is limited to medical therapy, temporary assist devices and in a select few, cardiac transplantation. A significant subset of patients with severe symptomatic CAD and end stage HF is not eligible for these traditional methods of treatment. In spite of maximal medical and revascularization therapy, these patients may not get adequate symptomatic relief. After a decade of investigations, gene therapy is emerging as a promising therapeutic option for this group of patients. This review discusses myocardial angiogenesis as a therapeutic modality in these patients including therapeutic angiogenesis with growth factors and cell transplantation.  相似文献   
10.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) functions by activating two receptor-tyrosine kinases, Flt-1 (VEGF receptor (VEGFR)-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. KDR is responsible for VPF/VEGF-stimulated endothelial cell proliferation and migration, whereas Flt-1 down-modulates KDR-mediated endothelial cell proliferation. Our most recent works show that pertussis toxin-sensitive G proteins and Gbetagamma subunits are required for Flt-1-mediated down-regulation of human umbilical vein endothelial cell (HUVEC) proliferation and that Gq/11 proteins are required for KDR-mediated RhoA activation and HUVEC migration. In this study, we demonstrate that Gq/11 proteins are also required for VPF/VEGF-stimulated HUVEC proliferation. Our results further indicate that Gq/11 proteins specifically mediate KDR signaling such as intracellular Ca2+ mobilization rather than Flt-1-induced CDC42 activation and that a Gq/11 antisense oligonucleotide completely inhibits MAPK phosphorylation induced by KDR but has no effect on Flt-1-induced MAPK activation. More importantly, we demonstrate that Gq/11 proteins interact with KDR in vivo, and the interaction of Gq/11 proteins with KDR does not require KDR tyrosine phosphorylation. Surprisingly, the Gq/11 antisense oligonucleotide completely inhibits VPF/VEGF-stimulated KDR phosphorylation. Expression of a constitutively active mutant of G11 but not Gq can cause phosphorylation of KDR and MAPK. In addition, a Gbetagamma minigene, hbetaARK1(495), inhibits VPF/VEGF-stimulated HUVEC proliferation, MAPK phosphorylation, and intracellular Ca2+ mobilization but has no effect on KDR phosphorylation. Taken together, this study demonstrates that Gq/11 proteins mediate KDR tyrosine phosphorylation and KDR-mediated HUVEC proliferation through interaction with KDR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号