首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   4篇
  81篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   11篇
  2013年   6篇
  2012年   6篇
  2011年   2篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1993年   2篇
  1988年   1篇
  1984年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
Two regions of the genome, a 1-kbp portion of the zeste locus and a 1.1- kbp portion of the yolk protein 2 locus, were sequenced in six individuals from each of four species: Drosophila melanogaster, D. simulans, D. mauritiana, and D. sechellia. The species and strains were the same as those of a previous study of a 1.9-kbp region of the period locus. No evidence was found for recent balancing or directional selection or for the accumulation of selected differences between species. Yolk protein 2 has a high level of amino acid replacement variation and a low level of synonymous variation, while zeste has the opposite pattern. This contrast is consistent with information on gene function and patterns of codon bias. Polymorphism levels are consistent with a ranking of effective population sizes, from low to high, in the following order: D. sechellia, D. melanogaster, D.mauritiana, and D. simulans. The apparent species relationships are very similar to those suggested by the period locus study. In particular, D. simulans appears to be a large population that is still segregating variation that arose before the separation of D. mauritiana and D. sechellia. It is estimated that the separation of ancestral D. melanogaster from the other species occurred 2.5-3.4 Mya. The separations of D. sechellia and D. mauritiana from ancestral D. simulans appear to have occurred 0.58- 0.86 Mya, with D. mauritiana having diverged from ancestral D. simulans 0.1 Myr more recently than D. sechellia.   相似文献   
2.

Background  

Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development.  相似文献   
3.
4.
Quantitative genetic analysis and mapping of leaf angle in durum wheat   总被引:1,自引:0,他引:1  
The leaf erectness profile has been used to optimize plant architecture since erect leaves can enhance photosynthesis and dry matter production by greater sunlight capture. Brassinosteroid is a recent class of phytohormones that has been related to a more erect profile. There are no reports in the literature of the genetic variability of leaf angle in doubled haploid durum wheat populations; most studies on leaf angle have focused on the inheritance. Our aim was to study the genetic variation in flag and penultimate leaf angle in a durum wheat doubled haploid mapping population, identifying and mapping quantitative trait loci influencing leaf angle. An F1-derived doubled haploid population of 89 lines from the cross Strongfield/Blackbird was used to construct a genetic map using 423 molecular marker loci. Two greenhouse experiments and one field test were conducted using an alpha lattice in a randomized complete block design with three replicates. The leaf angle was measured on flag and penultimate leaf with a protractor at three different growth stages. The results indicated poor to moderate correlations between the position of the leaf angle and the growth stage. Transgressive segregation beyond Strongfield and Blackbird of leaf angle was observed for all environments. Putative trait loci were identified on chromosomes 2A, 2B, 3A, 3B, 4B, 5B and 7A. This work helps to understand the genetics of leaf angle in durum wheat.  相似文献   
5.

Background  

There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs.  相似文献   
6.
7.

Key message

In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies.

Abstract

Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT® and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and validation of their broad resistance.  相似文献   
8.
Yee  KK; Costanzo  RM 《Chemical senses》1998,23(5):513-519
Following recovery from olfactory nerve transection, animals regain their ability to discriminate between odors. Odor discrimination is restored after new neurons establish connections with the olfactory bulb. However, it is not known if the new connections alter odor quality perception. To address this question, 20 adult hamsters were first trained to discriminate between cinnamon and strawberry odors. After reaching criterion (> or = 90% correct response), half of the animals received a bilateral nerve transection (BTX) and half a surgical sham procedure. Animals were not tested again until day 40, a point in recovery when connections are re-established with the bulb. When BTX animals were tested without food reinforcement, they could not perform the odor discrimination task. Sham animals, however, could discriminate, demonstrating that the behavioral response had not been extinguished during the 40 day period. When reinforcement was resumed, BTX animals were able to discriminate between cinnamon and strawberry after four test sessions. In addition, their ability to discriminate between these two familiar odors was no different than that of BTX and sham animals tested with two novel odors, baby powder and coffee. These findings suggest that, after recovery from nerve transection, there are alterations in sensory perception and that restoration of odor quality discrimination requires that the animal must again learn to associate individual odor sensations with a behavioral response.   相似文献   
9.

Background

A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317) suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env) are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans.

Results

Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression.

Conclusions

Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.  相似文献   
10.
Adult plant resistance (APR) to leaf rust and stripe rust derived from the wheat (Triticum aestivum L.) line PI250413 was previously identified in RL6077 (=Thatcher*6/PI250413). The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D. It was previously hypothesized that the gene in RL6077 could be Lr34 translocated to another chromosome. Hybrids between RL6077 and Thatcher and between RL6077 and 7DS and 7DL ditelocentric stocks were examined for first meiotic metaphase pairing. RL6077 formed chain quadrivalents and trivalents relative to Thatcher and Chinese Spring; however both 7D telocentrics paired only as heteromorphic bivalents and never with the multivalents. Thus, chromosome 7D is not involved in any translocation carried by RL6077. A genome-wide scan of SSR markers detected an introgression from chromosome 4D of PI250413 transferred to RL6077 through five cycles of backcrossing to Thatcher. Haplotype analysis of lines from crosses of Thatcher × RL6077 and RL6058 (Thatcher*6/PI58548) × RL6077 showed highly significant associations between introgressed markers (including SSR marker cfd71) and leaf rust resistance. In a separate RL6077-derived population, APR to stripe rust was also tightly linked with cfd71 on chromosome 4DL. An allele survey of linked SSR markers cfd71 and cfd23 on a set of 247 wheat lines from diverse origins indicated that these markers can be used to select for the donor segment in most wheat backgrounds. Comparison of RL6077 with Thatcher in field trials showed no effect of the APR gene on important agronomic or quality traits. Since no other known Lr genes exist on chromosome 4DL, the APR gene in RL6077 has been assigned the name Lr67.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号