首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   7篇
  2022年   1篇
  2021年   2篇
  2017年   1篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有35条查询结果,搜索用时 640 毫秒
1.
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne Alphavirus that causes a clinical disease involving fever, myalgia, nausea and rash. The distinguishing feature of CHIKV infection is the severe debilitating poly-arthralgia that may persist for several months after viral clearance. Since its re-emergence in 2004, CHIKV has spread from the Indian Ocean region to new locations including metropolitan Europe, Japan, and even the United States. The risk of importing CHIKV to new areas of the world is increasing due to high levels of viremia in infected individuals as well as the recent adaptation of the virus to the mosquito species Aedes albopictus. CHIKV re-emergence is also associated with new clinical complications including severe morbidity and, for the first time, mortality. In this study, we characterized disease progression and host immune responses in adult and aged Rhesus macaques infected with either the recent CHIKV outbreak strain La Reunion (LR) or the West African strain 37997. Our results indicate that following intravenous infection and regardless of the virus used, Rhesus macaques become viremic between days 1–5 post infection. While adult animals are able to control viral infection, aged animals show persistent virus in the spleen. Virus-specific T cell responses in the aged animals were reduced compared to adult animals and the B cell responses were also delayed and reduced in aged animals. Interestingly, regardless of age, T cell and antibody responses were more robust in animals infected with LR compared to 37997 CHIKV strain. Taken together these data suggest that the reduced immune responses in the aged animals promotes long-term virus persistence in CHIKV-LR infected Rhesus monkeys.  相似文献   
2.
Functional genomics in virology and antiviral drug discovery   总被引:3,自引:0,他引:3  
  相似文献   
3.
The eukaryotic replicative DNA polymerases are similar to those of large DNA viruses of eukaryotic and bacterial T4 phages but not to those of eubacteria. We develop and examine the hypothesis that DNA virus replication proteins gave rise to those of eukaryotes during evolution. We chose the DNA polymerase from phycodnavirus (which infects microalgae) as the basis of this analysis, as it represents a virus of a primitive eukaryote. We show that it has significant similarity with replicative DNA polymerases of eukaryotes and certain of their large DNA viruses. Sequence alignment confirms this similarity and establishes the presence of highly conserved domains in the polymerase amino terminus. Subsequent reconstruction of a phylogenetic tree indicates that these algal viral DNA polymerases are near the root of the clade containing all eukaryotic DNA polymerase delta members but that this clade does not contain the polymerases of other DNA viruses. We consider arguments for the polarity of this relationship and present the hypothesis that the replication genes of DNA viruses gave rise to those of eukaryotes and not the reverse direction.  相似文献   
4.
One of the most important innate host defense mechanisms against viral infection is the induction of interferon (IFN)-stimulated genes (ISGs). Immediately upon entry, viruses activate interferon-regulatory factor 3 (IRF3), as well as nuclear factor kappaB (NF-kappaB), which transactivate a subset of ISGs, proinflammatory genes, as well as IFN genes. Most large DNA viruses exhibit countermeasures against induction of this response. However, whereas human cytomegalovirus (HCMV) inhibits IFN-dependent induction of ISGs, IFN-independent induction of ISGs is observed both in the presence and, even moreso, in the absence of viral gene expression. Rhesus CMV (RhCMV) is an emerging animal model for HCMV sharing important similarities in primary structure, epidemiology, and pathogenesis. To determine whether RhCMV would similarly induce ISGs, we performed DNA microarray and quantitative PCR analysis of ISG expression in rhesus fibroblasts infected with RhCMV or HCMV. In contrast to HCMV, however, RhCMV did not induce expression of ISGs or proinflammatory genes at any time after infection. Moreover, dimerization and nuclear accumulation of IRF3, readily observed in HCMV-infected cells, was absent from RhCMV-infected cells, whereas neither virus seemed to activate NFkappaB. RhCMV also blocked IRF3 activation by live or UV-inactivated HCMV, suggesting that RhCMV inhibits viral IRF3 activation and the resultant ISG induction with extraordinary efficiency. Since infection during inhibition of protein expression by cycloheximide or inactivation of viral gene expression by UV treatment did not trigger IRF3 activation or ISG expression by RhCMV, we conclude that RhCMV virions contain a novel inhibitor of IFN-independent viral induction of ISG expression by IRF3.  相似文献   
5.
The bovine papillomavirus E2 protein can inhibit the proliferation of HT-3 cells, a p53-negative cervical carcinoma cell line containing integrated human papillomavirus type 30 DNA. Here, we analyzed HT-3 cells to explore the mechanism of p53-independent E2-mediated growth inhibition. Expression of the E2 protein repressed expression of the endogenous human papillomavirus type 30 E6/E7 genes. This was accompanied by hypophosphorylation and increased accumulation of p105Rb and repression of E2F1 expression. The E2 protein also caused reduced cyclin-dependent kinase (cdk) 2 activity, but this did not appear to be due to increased expression of cdk inhibitors. Rather, expression of cyclin A, which regulates cdk2 activity, and the cdc25A and cdc25B phosphatases, which are thought to activate cdk2, was significantly reduced at both the RNA and protein levels in response to E2 expression. The E2 protein reduced expression of cdc25A and cdc25B in both HT-3 and HeLa cells, but not in cells that were not growth-inhibited by the E2 protein. E2 point mutants unable to inhibit cell growth did not repress cdc25A and cdc25B expression, nor did the cell cycle inhibitors hydroxyurea and mimosine. Based on these results and the known properties of cell cycle components, we propose a model to account for E2-induced growth inhibition of cervical carcinoma cell lines.  相似文献   
6.
7.
8.
9.
Involvement of rabphilin-3A-like (RPH3AL), or Noc2, the potential effector of Ras-associated binding proteins Rab3A and Rab27A in the regulation of exocytotic processes in the endocrine pancreas has been demonstrated in experimental models. Noc2 expression together with other regulatory molecules of the exocytotic machinery in human tissues, however, has not been studied. We evaluated immunohistochemical expression of the key molecules of the exocytotic machinery, Noc2, Rab3A, Rab27A, and RIM2, together with the characteristic islet cell hormones, insulin and glucagon in normal and endocrine tumor tissues of human pancreas. Normal pancreatic islets were stained for all of these proteins and showed strong cytoplasmic localization. A similar pattern of strong cytoplasmic expression of these proteins was observed in the majority of endocrine tumors. By contrast, the exocrine portions of normal appearing pancreas completely lacked Rab27A staining and showed decreased expression of the proteins, Noc2, Rab3A, and RIM2. The staining pattern of Noc2 and Rab27A was similar to the staining pattern of glucagon-producing cells within the islets. The concomitant expression of Noc2 with these molecules suggests that Noc2 may serve as an effector for Rab3A and Rab27A and that it is involved in the regulation of exocytosis of the endocrine pancreas in humans.  相似文献   
10.
Zaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP(1,2)) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP(1,2) (VLP(VP40-GP)) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLP(VP40) (particles lacking GP(1,2)) caused an aberrant response. This suggests that GP(1,2) binding to macrophages plays an important role in the immediate cellular response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号