首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2003年   2篇
  1994年   1篇
  1991年   3篇
  1988年   1篇
  1985年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
2.
CELLULOSE SYNTHASE5 (CESA5) synthesizes cellulose necessary for seed mucilage adherence to seed coat epidermal cells of Arabidopsis (Arabidopsis thaliana). The involvement of additional CESA proteins in this process and details concerning the manner in which cellulose is deposited in the mucilage pocket are unknown. Here, we show that both CESA3 and CESA10 are highly expressed in this cell type at the time of mucilage synthesis and localize to the plasma membrane adjacent to the mucilage pocket. The isoxaben resistant1-1 and isoxaben resistant1-2 mutants affecting CESA3 show defects consistent with altered mucilage cellulose biosynthesis. CESA3 can interact with CESA5 in vitro, and green fluorescent protein-tagged CESA5, CESA3, and CESA10 proteins move in a linear, unidirectional fashion around the cytoplasmic column of the cell, parallel with the surface of the seed, in a pattern similar to that of cortical microtubules. Consistent with this movement, cytological evidence suggests that the mucilage is coiled around the columella and unwinds during mucilage extrusion to form a linear ray. Mutations in CESA5 and CESA3 affect the speed of mucilage extrusion and mucilage adherence. These findings imply that cellulose fibrils are synthesized in an ordered helical array around the columella, providing a distinct structure to the mucilage that is important for both mucilage extrusion and adherence.The epidermal cells of Arabidopsis (Arabidopsis thaliana) seed coats produce two distinct secondary cell walls: pectin-rich mucilage and cellulose-rich columellae (Western et al., 2000). When seeds are hydrated, mucilage expands rapidly, rupturing the outer tangential cell wall and forming a mucilage capsule that surrounds the seed. Seed coat mucilage is composed primarily of rhamnogalacturonan I (RG I) and also contains homogalacturonan (HG), hemicelluloses (such as xylans and glucomannans), and cellulose (for review, see Haughn and Western, 2012). Extruded mucilage consists of an outer, nonadherent fraction and an inner, adherent fraction (Western et al., 2000, 2001; Macquet et al., 2007a). The adherent and nonadherent mucilage layers differ in the amount of methylesterified HG (Rautengarten et al., 2008; Saez-Aguayo et al., 2013; Voiniciuc et al., 2013), galactans (Dean et al., 2007; Macquet et al., 2007b), arabinans (Arsovski et al., 2009), mannans (Yu et al., 2014), and cellulose (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011), all of which influence the physical properties of the layers.Adherent mucilage has a distinct structure, which can be examined using cell wall dyes and antibodies. When treated with cellulose-specific dyes, densely stained rays extend from the top of each columella to the outer edge of the adherent layer, many cell lengths above the seed surface (Mendu et al., 2011; Sullivan et al., 2011). Cytological evidence indicates that cellulose, pectins, and mannans are components of the ray (Haughn and Western, 2012; Griffiths et al., 2014; North et al., 2014; Yu et al., 2014), although the exact manner in which they are assembled is unknown.Cellulose is abundant in mucilage rays and mediates adherence. Loss-of-function mutations in CELLULOSE SYNTHASE5 (CESA5) result in reduced cellulose levels and increased detachment of mucilage from the seed (Harpaz-Saad et al., 2011; Mendu et al., 2011; Sullivan et al., 2011; Griffiths et al., 2014). How a reduction in cellulose results in a loss of adherence is still unknown, but it likely involves interaction with other mucilage components such as pectin and arabinogalactan proteins (Griffiths et al., 2014). Since cesa5 mutants still have some cellulose in the rays of the adherent mucilage halo (Mendu et al., 2011; Sullivan et al., 2011), additional cellulose synthases must be involved in mucilage cellulose biosynthesis.The Arabidopsis genome encodes 10 different CESAs (Delmer, 1999; Richmond and Somerville, 2000). Multiple lines of evidence suggest that three different CESAs are required to form one active cellulose synthase complex (CSC; for review, see Somerville, 2006). CSCs are membrane-bound protein complexes that synthesize cellulose microfibrils in the apoplast (for review, see Somerville, 2006; Endler and Persson, 2011; Lei et al., 2012). CESA1, CESA3, and CESA6 are considered the core components of the primary wall CSC (Desprez et al., 2007; Persson et al., 2007). CESA2, CESA5, and CESA9 are partially redundant to CESA6 in primary wall biosynthesis, and genetic evidence suggests that each of these CESA polypeptides can form a functional CSC with CESA3 and CESA1 (Desprez et al., 2007; Persson et al., 2007). CESA10 is expressed in young plants, stems, floral tissue, and the base of rosette leaves (Beeckman et al., 2002; Doblin et al., 2002), but its function in cellulose biosynthesis is unclear. Other cesa mutant lines have been examined for altered mucilage phenotypes (cesa1, radially swollen1 [Burn et al., 2002; Sullivan et al., 2011], cesa2, cesa6, and cesa9 [Mendu et al., 2011]; CESA3, je5 [Sullivan et al., 2011] and cesa10-1 [Sullivan et al., 2011]); to date, only CESA5 has been shown to be required for cellulose biosynthesis during mucilage deposition.Two mutant alleles of CESA3, isoxaben resistant1-1 (ixr1-1) and ixr1-2, were isolated in a screen for resistance to the herbicide isoxaben (Scheible et al., 2001). Isoxaben inhibits the incorporation of Glc into the emerging cellulose polymer and is considered a potent and specific inhibitor of cellulose biosynthesis (Heim et al., 1990). Homozygous ixr1-1 and ixr1-2 lines show increased resistance to the herbicide, and the mutations causing this resistance were mapped to the genomic locus of CESA3 (Heim et al., 1990; Scheible et al., 2001). The ixr1-1 and ixr1-2 mutations cause amino acid substitutions near the C terminus of the CESA3 protein. ixr1-1 causes a Gly-to-Asn substitution (G998A) located in a transmembrane domain, while ixr1-2 contains a Thr-to-Ile substitution (T942I) in an apoplastic region of the protein between two transmembrane domains (Scheible et al., 2001). Recently, the ixr1-2 allele was shown to affect the velocity of CSCs in the plasma membrane, which consequently modifies cellulose crystallinity in the cell wall (Harris et al., 2012). It is not exactly clear how the ixr1-1 mutation affects cellulose biosynthesis. The effects of either of these mutations on seed coat mucilage have not been investigated.Since mucilage is composed primarily of pectins with smaller amounts of cellulose, seed coat epidermal cells represent an excellent system to study cellulose biosynthesis and interactions between cellulose and other wall components in muro. In this study, we investigated how cellulose is synthesized and deposited in seed coat epidermal cells. We show that at least three different CESA proteins are highly expressed in the seed coat epidermis during mucilage biosynthesis. These CESAs are oriented and move in a linear fashion around the cytoplasmic column of each cell in an identical pattern to cortical microtubules. In addition, we provide evidence that the adherent mucilage has a helical structure that expands and unwinds during extrusion to form the mucilage ray. We propose that during seed coat epidermal cell development, the biosynthesis of cellulose predetermines the structure of rays in the adherent mucilage layer.  相似文献   
3.
Loss of fluid shear stress (ischemia) to the lung endothelium causes endothelial plasma membrane depolarization via ATP-sensitive K(+) (K(ATP)) channel closure, initiating a signaling cascade that leads to NADPH oxidase (NOX2) activation and ROS production. Since wortmannin treatment significantly reduces ROS production with ischemia, we investigated the role of phosphoinositide 3-kinase (PI3K) in shear-associated signaling. Pulmonary microvascular endothelial cells in perfused lungs subjected to abrupt stop of flow showed membrane depolarization and ROS generation. Stop of flow in flow-adapted mouse pulmonary microvascular endothelial cells in vitro resulted in the activation of PI3K and Akt as well as ROS generation. ROS generation in the lungs in situ was almost abolished by the PI3K inhibitor wortmannin and the PKC inhibitor H7. The combination of the two (wortmannin and H7) did not have a greater effect. Activation of NOX2 was greatly diminished by wortmannin, knockout of Akt1, or dominant negative PI3K, whereas membrane depolarization was unaffected. Ischemia-induced Akt activation (phosphorylation) was not observed with K(ATP) channel-null cells, which showed minimal changes in membrane potential with ischemia. Activation of Akt was similar to wild-type cells in NOX2-null cells, which do not generate ROS with ischemia. Cromakalim, a K(ATP) channel agonist, prevented both membrane depolarization and Akt phosphorylation with ischemia. Thus, Akt1 phosphorylation follows cell membrane depolarization and precedes the activation of NOX2. These results indicate that PI3K/Akt and PKC serve as mediators between endothelial cell membrane depolarization and NOX2 assembly.  相似文献   
4.
Arabidopsis (Arabidopsis thaliana) epidermal seed coat cells follow a complex developmental program where, following fertilization, cells of the ovule outer integument differentiate into a unique cell type. Two hallmarks of these cells are the production of a doughnut-shaped apoplastic pocket filled with pectinaceous mucilage and the columella, a thick secondary cell wall. Cellulose is thought to be a key component of both these secondary cell wall processes. Here, we investigated the role of cellulose synthase (CESA) subunits CESA2, CESA5, and CESA9 in the seed coat epidermis. We characterized the roles of these CESA proteins in the seed coat by analyzing cell wall composition and morphology in cesa mutant lines. Mutations in any one of these three genes resulted in lower cellulose content, a loss of cell shape uniformity, and reduced radial wall integrity. In addition, we found that attachment of the mucilage halo to the parent seed following extrusion is maintained by cellulose-based connections requiring CESA5. Hence, we show that cellulose fulfills an adhesion role between the extracellular mucilage matrix and the parent cell in seed coat epidermal cells. We propose that mucilage remains attached to the seed coat through interactions between components in the seed mucilage and cellulose. Our data suggest that CESA2 and CESA9 serve in radial wall reinforcement, as does CESA5, but CESA5 also functions in mucilage biosynthesis. These data suggest unique roles for different CESA subunits in one cell type and illustrate a complex role for cellulose biosynthesis in plant developmental biology.  相似文献   
5.
6.
Nestbox provision is a technique used to increase nest-site availability for secondary cavity-nesting birds. However, little is known about the demographic consequences of nestbox provision in different habitat types. To assess how nestbox provision affects the density of hole-nesting birds simultaneously in two contrasting habitats, we compared the breeding density of Great Tits along transects without nestboxes with that in transects where nestboxes were provided. Although the initial density of breeders was considerably higher in the deciduous habitat than in the coniferous habitat, provision of nestboxes increased density by a similar number of additional pairs in each habitat type. Thus, the provision of nestboxes in managed coniferous forests may be as effective in increasing the breeding opportunities of cavity nesters as in deciduous stands. Moreover, previous research showed that pairs in deciduous habitat with nestboxes have consistently lower breeding success than those in coniferous habitat with nestboxes. It is possible that the addition of nestboxes in the preferred habitat increased density to such an extent that density-dependent effects became apparent.  相似文献   
7.
Calmodulin N-methyltransferase (CaM KMT) is an evolutionarily conserved enzyme in eukaryotes that transfers three methyl groups to a highly conserved lysyl residue at position 115 in calmodulin (CaM). We sought to elucidate whether the methylation status of CaM plays a role in CaM-mediated signaling pathways by gene expression analyses of CaM KMT and phenotypic characterization of Arabidopsis thaliana lines wherein CaM KMT was overexpressed (OX), partially silenced, or knocked out. CaM KMT was expressed in discreet spatial and tissue-specific patterns, most notably in root tips, floral buds, stamens, apical meristems, and germinating seeds. Analysis of transgenic plants with genetic dysfunction in CaM KMT revealed a link between the methylation status of CaM and root length. Plants with suppressed CaM methylation had longer roots and CaM KMT OX lines had shorter roots than wild type (Columbia-0). CaM KMT was also found to influence the root radial developmental program. Protein microarray analyses revealed a number of proteins with specificity for methylated forms of CaM, providing candidate functional intermediates between the observed phenotypes and the target pathways. This work demonstrates that the functionality of the large CaM family in plants is fine-tuned by an overarching methylation mechanism.  相似文献   
8.
9.
Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell''s function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of asymmetrical cellular differentiation occurs in Arabidopsis seed coat epidermal cells, where we have recently shown that two secondary cell wall processes occur that utilize different cellulose synthase (CESA) proteins. One process is to produce pectinaceous mucilage that expands upon hydration and the other is a radial wall thickening that reinforced the epidermal cell structure. Our data illustrate polarized specialization of CESA5 in facilitating mucilage attachment to the parent seed and CESA2, CESA5 and CESA9 in radial cell wall thickening and formation of the columella. Herein, we present a model for the complexity of cellulose biosynthesis in this highly differentiated cell type with further evidence supporting each cellulosic secondary cell wall process.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号