首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1624篇
  免费   122篇
  2023年   16篇
  2022年   40篇
  2021年   70篇
  2020年   27篇
  2019年   37篇
  2018年   49篇
  2017年   41篇
  2016年   62篇
  2015年   96篇
  2014年   112篇
  2013年   141篇
  2012年   141篇
  2011年   158篇
  2010年   86篇
  2009年   57篇
  2008年   89篇
  2007年   92篇
  2006年   68篇
  2005年   44篇
  2004年   65篇
  2003年   46篇
  2002年   55篇
  2001年   16篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1994年   4篇
  1993年   2篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   5篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1972年   6篇
  1970年   4篇
排序方式: 共有1746条查询结果,搜索用时 265 毫秒
1.
Alzheimer's disease is a progressive and neurodegenerative disorder which involves multiple molecular mechanisms. Intense research during the last years has accumulated a large body of data and the search for sensitive and specific biomarkers has undergone a rapid evolution. However, the diagnosis remains problematic and the current tests do not accurately detect the process leading to neurodegeneration. Biomarkers discovery and validation are considered the key aspects to support clinical diagnosis and provide discriminatory power between different stages of the disorder. A considerable challenge is to integrate different types of data from new potent approach to reach a common interpretation and replicate the findings across studies and populations. Furthermore, long-term clinical follow-up and combined analysis of several biomarkers are among the most promising perspectives to diagnose and manage the disease. The present review will focus on the recent published data providing an updated overview of the main achievements in the genetic and biochemical research of the Alzheimer's disease. We also discuss the latest and most significant results that will help to define a specific disease signature whose validity might be clinically relevant for future AD diagnosis.  相似文献   
2.
3.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
4.
Abstract

We propose a study of the main species belonging to the genus Quercus in Italy, characterized and identified by means of leaf surface observation, with special attention devoted to waxes, trichomes and stomata. Comparing our results with the classification proposed by SCHWARZ (1984), we find that species belonging to Schwarz's subgenus Quercus are recognizable because their waxes are structured in vertical scales; the two other subgenera (Sclerophyllodrys and Cerris) present smooth wax structures, their distinctive feature being the shape of the stomatal rima, which is roundish in Sclerophyllodrys and elliptical in Cerris. The study characterizes Quercus pubescens Willd. and Quercus petraea Liebl. by analyzing some morphometric traits; but the authors feel that further research is needed on these critical taxonomic entities. Lastly, the study examines forms of was degeneration correlated to the phenomenon known as oak decline.  相似文献   
5.
In this paper we attempt a functional and spectral characterization of the membrane-bound cytochromes involved in respiratory electron transport by membranes from cells of Chloroflexus aurantiacus grown in the dark under oxygen saturated conditions. We conclude that the NADH-dependent respiration is carried out by a branched respiratory chain leading to two oxidases which differ in sensitivity to CN- and CO. The two routes also show a different sensitivity to the ubiquinone analogue, HQNO, the pathway through the cytochrome c oxidase being fully blocked by 5 M HQNO, whereas the alternative one is insensitive to this inhibitor. The cytochrome c oxidase containing branch is composed by at least two c-type haems with E m 7.0 of +130 and +270 mV ( bands at 550/553 nm and 549 nm, respectively), plus a b-type cytochrome with E m 7.0 of +50 mV ( band at 561 nm). From this, and previous work, we conclude that respiratory and photosynthetic electron transport components are assembled together and function on a single undifferentiated plasma membrane.Abbreviations HQNO heptylhydroxy-quinoline-N-oxide - UHDBT undecyl-hydroxydioxobenthiazole - Q/b-c ubiquinol/cytochrome c oxidoreductase complex - BChl bacteriochlorophyll  相似文献   
6.
Minced polyester threads introduced into peritoneal cavity of guinea pigs or rats cause a granulomatous inflammation with evidence of macrophage stimulation. Chemotactic agents play an important role in the inflammatory reaction; they may be exogenous and/or endogenous. These are released locally by the cells involved in inflammation. In this paper the chemotactic effects of the peritoneal fluids from rats bearing the polyester inflammatory process, have been studied on PMN cells "in vitro". The peritoneal cavity fluids were obtained by washing the cavity of untreated rats or rats intraperitoneally injected with polyester, 1, 3, 7, 14 days after the intraperitoneal injection. The chemotactic response was assayed by employing modified chemotaxis Boyden chambers (Blind Well Neuro Probe) and polymorphonuclear leukocytes from normal or treated rats. Quantification of the migration was calculated by chemotactic index (A/B) (B = random migration, A = chemotaxis). The results demonstrated that the peritoneal fluids taken 3 and 7 days after the intraperitoneal polyester injection, elicit an evident chemotaxis response greater than that showed by peritoneal fluids from control rats. It is suggested that chemotactic factors can be produced and released by mononuclear cells involved in the inflammatory process.  相似文献   
7.
In a previous work (Kömen et al. 1991) it has been concluded that membrane fragments isolated from autotrophically grown Alcaligenes eutrophus H16 contain several iron-sulphur centres along with haems of a-, b-, c-, and d-type. These redox components have been proposed to be part of a branched respiratory chain leading to multiple membrane bound oxidases. Here, some of the respiratory activities catalyzed by membrane fragments from wild type cells of A. eutrophus (H16) and, for comparison, Paracoccus denitrificans, have been investigated through the use of electron transport inhibitors. Cyanide (CN-) titration curves indicated that in A. eutrophus H16 oxidation of succinate and H2 preferentially proceeds via the cytochrome c oxidase(s) branch (I 50=2 · 10-5 M) whereas the NADH dependent respiration started being inhibited at higher CN- concentrations (I 50=5 · 10-4 M). In membranes isolated from both, cells harvested at late growth-phase (OD 12) and from a mutant deficient in cytochrome c oxidase activity (A. eutrophus RK1), respiration was insensitive to low CN- concentrations (< 10-4 M), and it was sustained by the high catalytic activities of two quinol oxidases. These alternative oxidases of b- (formally o-) and d-type showed different sensitivities to KCN (I 50=10-3 M and 10-2 M, respectively). Interestingly, the cytochrome c oxidase(s) dependent respiration of H16 membranes was insensitive to antimycin A but largely inhibited by myxothiazol (10-6 M). This, and previous work (Kömen et al. 1991), suggest that although the respiratory chain of A. eutrophus is endowed with a putative bc 1 complex, its biochemical nature and role in respiration of this organism are apparently different from those of P. denitrificans. The peculiarity of the respiratory chain of A. eutrophus is confirmed by the rotenone insensitivity of the NADH oxidation in both protoplasts and membrane fragments from wild type and soluble hydrogenase deficient cells (HF14 and HF160). A tentative model of the respiratory chain of autotrophically grown A. eutrophus is presented.  相似文献   
8.
The spectral characteristics of absorption and fluorescence emission of 9-amino acridine are not altered by the interaction with bacterial chromatophores, except for the attenuation of both the absorption and emission following the formation of a protonic gradient. The lifetime of fluorescence of the dye is significantly affected in the presence of membranes, and even more following illumination. The shortening of the lifetime induced by light is reversible and prevented by nigericin and K+. The onset kinetics of the fluorescence quenching following the generation of an artificial transmembrane pH difference is temperature dependent, with an activation energy of 17 +/- 3 kcal/mol. The effect of pH on the rate constants is consistent with a model assuming that the diffusion of the unprotonated species is the limiting step in the quenching phenomenon. The response of 9-amino acridine to artificially imposed delta pH's has been utilized as a calibration method for the measurements of the light-induced protonic gradient. The apparent inner volume of chromatophores, evaluated from the extraplation of the response at delta pH = 0, was found to be much larger (15- to 40-fold) than the true osmotic volume, indicating that most of the dye is bound to the membrane when accumulated into the inner lumen.  相似文献   
9.
The composition of the membrane-bound electron transport system of the phytopathogenic bacteriumPseudomonas cichorii underwent modification in response to oxygen supply. Growth adaptation to low oxygen concentrations was characterized by repression of cytochromes involved in ubiquinol-cyt.c oxidoreductase and cyt.c oxidase activities. By contrast, cyto.o, i.e., the alternative cyanide-insensitive oxidase ofP. cichorii, was unaffected by low oxygen tension. Noa-type cytochromes could be detected at any stage of growth.  相似文献   
10.
Delocalized chemiosmotic coupling of oxidative phosphorylation requires that a single-value correlation exists between the extent of Δ\?gmH+ and the kinetic parameters of respiration and ATP synthesis. This expectation was tested experimentally in nigericin-treated plant mitochondria in single combined experiments, in which simultaneously respiration (in State 3 and in State 4) was measured polarographically, FΔψ (which under these conditions was equivalent to Δ\?gmH+) was evaluated potentiometrically from the uptake of tetraphenylphosphonium+ and the rate of phosphorylation was estimated from the transient depolarization of mitochondria during State 4-State 3-State 4 transitions. The steady-state rates of the different biochemical reactions were progressively inhibited by specific inhibitors active with different modalities on various steps of the energy-transducing process: succinate respiration was inhibited competitively with malonate or noncompetitively with antimycin A, or by limiting the rate of transport into the mitochondria of the respiratory substrate with phenylsuccinate; Δ\?gmH+ was dissipated by uncoupling with increasing concentrations of valinomycin; ADP phosphorylation was limited with oligomycin. The results indicate generally that when the rate of respiratory electron flow is decreased, a parallel inhibition of the rate of phosphorylation is also observed, while very limited effects can be detected on the extent of Δ\?gmH+. This behavior is in marked contrast to the effect of uncoupling where the decreased rate of ATP synthesis is clearly due to energy limitation. Extending previous observations in bacterial photosynthesis and in respiration by animal mitochondria and submitochondrial particles the results indicate, therefore, that respiration tightly controls the rate of ATP synthesis, with a mechanism largely independent of Δ\?gmH+. These data cannot be reconciled with a delocalized chemiosmotic coupling model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号