The presence of a surrounding medium strongly affects the spectral properties of localized surface plasmons at metallic nanoparticles. Vice versa, plasmonic resonances have large impact on the electric polarization in a surrounding or supporting material. For applications, e.g., in light-converting devices, the coupling of localized surface plasmons with polarizations in semiconducting substrates is of particular importance. Using photoemission electron microscopy with tunable laser excitation, we perform single-particle spectroscopy of silver nanoclusters directly grown on Si(100). Two distinct localized surface plasmon modes are observed as resonances in the two-photon photoemission signals from individual silver clusters. The strengths of these resonances strongly depend on the polarization of the exciting electric field, which allows us to assign them to plasmon modes with polarizations parallel and perpendicular, respectively, to the supporting silicon substrate. Our mode assignment is supported by simulations which provide insight into the mutual interaction of charge oscillations at the particle surface with electric polarizations at the silver/silicon interface.
This study was aimed at a better understanding of organelle organization in the yeast Saccharomyces cerevisiae with special emphasis on the interaction and physical association of organelles. For this purpose, a computer aided method was employed to generate three-dimensional ultrastructural reconstructions of chemically and cryofixed yeast cells. This approach showed at a high level of resolution that yeast cells were densely packed with organelles that had a strong tendency to associate at a distance of <30 nm. The methods employed here also allowed us to measure the total surface area and volume of organelles, the number of associations between organelles, and the ratio of associations between organelles per surface area. In general, the degree of organelle associations was found to be much higher in chemically fixed cells than in cryofixed cells, with endoplasmic reticulum/plasma membrane, endoplasmic reticulum/mitochondria and lipid particles/nuclei being the most prominent pairs of associated fractions. In cryofixed cells, similar preferences for organelle association were seen, although at lower frequency. The occurrence of specific organelle associations is believed to be important for intracellular translocation and communication. Membrane contact as a possible means of interorganelle transport of cellular components, especially of lipids, is discussed. 相似文献
The phospholipid and sterol composition of the plasma membranes of five fluconazole-resistant clinical Candida albicans isolates was compared to that of three fluconazole-sensitive ones. The three azole-sensitive strains tested and four of the five resistant strains did not exhibit any major difference in their phospholipid and sterol composition. The remaining strain (R5) showed a decreased amount of ergosterol and a lower phosphatidylcholine:phosphatidylethanolamine ratio in the plasma membrane. These changes in the plasma membrane lipid and sterol composition may be responsible for an altered uptake of drugs and thus for a reduced intracellular accumulation of fluconazole thereby providing a mechanism for azole resistance. 相似文献
Submitochondrial membrane fractions from yeast that are enriched in inner and outer membrane contact sites were analyzed with respect to their lipid composition. Characteristic features were the significantly reduced content of phosphatidylinositol, the decreased amount of phosphatidylcholine, and the enrichment in phosphatidylethanolamine and cardiolipin. Coisolation of phosphatidylserine synthase with the outer membrane portion and enrichment of phosphatidylserine decarboxylase in the inner membrane portion of isolated contact sites provided the basis for a metabolic assay to study phosphatidylserine transfer from the outer to the inner mitochondrial membrane via contact sites. The efficient conversion to [3H]phosphatidylethanolamine of [3H]phosphatidylserine synthesized from [3H]serine in situ supports the notion that mitochondrial membrane contact sites are zones of intramitochondrial translocation of phosphatidylserine. 相似文献
The heterotrophic nitrifier Pseudomonas putida aerobically oxidized ammonia to hydroxylamine, nitrite, and nitrate. Product formation was accompanied by a small but significant
release of NO, whereas N2O evolution could not be detected under the assay conditions employed. The isolate reduced nitrate to nitrite and partially
further to NO under anaerobic conditions. Aerobically grown cells utilized γ-aminobutyrate as a carbon source and as a N-source
by ammonification. The physiological experiments, in particular the inhibition pattern by C2H2, indicated that P. putida expressed an ammonia monooxigenase. DNA-hybridization with an amoA gene probe coding for the smaller subunit of the ammonia monooxigenase of Nitrosomonas europaea allowed us to identify, to clone, and to sequence a region with an open reading frame showing distinct sequence similarities
to the amoA gene of autotrophic ammonia oxidizers.
Received: 9 April 1998 / Accepted: 15 May 1998 相似文献
Cerulenin inhibits fatty acid synthesis in yeast; supplementation with exogenous fatty acids is required to maintain cell growth. In the presence of cerulenin and exogenous fatty acids inositol-deficient cells accumulate triacylglycerols to almost the same extent as normally grown deficient cells, indicating that increased fatty acid synthesis is not primarily responsible for triacylglycerol accumulation. 相似文献
A recent epidemiological study demonstrated a reduced risk of lung cancer mortality in breast cancer patients using antiestrogens. These and other data implicate a role for estrogens in lung cancer, particularly nonsmall cell lung cancer (NSCLC). Approximately 61% of human NSCLC tumors express nuclear estrogen receptor β (ERβ); however, the role of ERβ and estrogens in NSCLC is likely to be multifactorial. Here we tested the hypothesis that proteins interacting with ERβ in human lung adenocarcinoma cells that respond proliferatively to estradiol (E2) are distinct from those in non-E2-responsive cells.
Methods
FLAG affinity purification of FLAG-ERβ-interacting proteins was used to isolate ERβ-interacting proteins in whole cell extracts from E2 proliferative H1793 and non-E2-proliferative A549 lung adenocarcinoma cell lines. Following trypsin digestion, proteins were identified using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). Proteomic data were analyzed using Ingenuity Pathway Analysis. Select results were confirmed by coimmunoprecipitation.
Results
LC-MS/MS identified 27 non-redundant ERβ-interacting proteins. ERβ-interacting proteins included hsp70, hsp60, vimentin, histones and calmodulin. Ingenuity Pathway Analysis of the ERβ-interacting proteins revealed differences in molecular and functional networks between H1793 and A549 lung adenocarcinoma cells. Coimmunoprecipitation experiments in these and other lung adenocarcinoma cells confirmed that ERβ and EGFR interact in a gender-dependent manner and in response to E2 or EGF. BRCA1 interacted with ERβ in A549 cell lines and in human lung adenocarcinoma tumors, but not normal lung tissue.
Conclusion
Our results identify specific differences in ERβ-interacting proteins in lung adenocarcinoma cells corresponding to ligand-dependent differences in estrogenic responses.
Genetic manipulation of lipid biosynthetic enzymes allows modification of cellular membranes. We made use of this strategy and constructed mutants in phospholipid metabolism of Pichia pastoris , which is widely used in biotechnology for expression of heterologous proteins. Here we describe identification of two P. pastoris phosphatidylserine decarboxylases (PSDs) encoded by genes homologous to PSD1 and PSD2 from Saccharomyces cerevisiae . Using P. pastoris psd1 Δ and psd2 Δ mutants we investigated the contribution of the respective gene products to phosphatidylethanolamine synthesis, membrane composition and cell growth. Deletion of PSD1 caused loss of PSD activity in mitochondria, a severe growth defect on minimal media and depletion of cellular and mitochondrial phosphatidylethanolamine levels. This defect could not be compensated by Psd2p, but by supplementation with ethanolamine, which is the substrate for the cytidine diphosphate (CDP)–ethanolamine pathway, the third route of phosphatidylethanolamine synthesis in yeast. Fatty acid analysis showed selectivity of both Psd1p and Psd2p in vivo for the synthesis of unsaturated phosphatidylethanolamine species. Phosphatidylethanolamine species containing palmitic acid (16:0), however, were preferentially assembled into mitochondria. In summary, this study provides first insight into membrane manipulation of P. pastoris , which may serve as a useful method to modify cell biological properties of this microorganism for biotechnological purposes. 相似文献