首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
INTRODUCTI0NThedifferentiati0nofcelIsalongthemonocyte-macr0phagepathwayandthesig-nalsinvo1vedinthesecel1sacquiringtheabilitytokilltum0rcellsarenotfllllyundersto0d.Wehavebeenstudingamoleculewhichappearst0beanimportantmemberofthecytokinenetworkinvo1vedintheregulati0nmonocyteactivation.ThiscytokinetermedP48wasisolatedfr0mthehllmannullcellleukemiacell1ineReh.IthasbeenpurifiedtohomogeneityandfOundtobedistinctfrominterferongamma,col0nystimulatingfactors(CSFs)andTNFalphaalldbeta[1,2].Func-ti…  相似文献   
2.
It has been proved that the principal component of senile plaques is aggregates of β‐amyloid peptide (Aβ) in cases of one of the most common forms of age‐related neurodegenerative disorders, Alzheimer's disease (AD). Although the synthetic methods for the synthesis of Aβ peptides have been developed since their first syntheses, Aβ[1‐42] is still problematic to prepare. The highly hydrophobic composition of Aβ[1‐42] results in aggregation between resin‐bound peptide chains or intrachain aggregation which leads to a decrease in the rates of deprotection and repetitive incomplete coupling reactions during 9‐flurenylmethoxycarbonyl (Fmoc) synthesis. In order to avoid aggregation and/or disrupt internal aggregation during stepwise Fmoc solid phase synthesis and to improve the quality of crude products, several attempts have been made. Since highly pure Aβ peptides in large quantities are used in biological experiments, we wanted to develop a method for a rational synthesis of human Aβ[1‐42] with high purity and adequate yield. This paper reports a convenient methodology with a novel solvent system for the synthesis of Aβ[1‐42], its N‐terminally truncated derivatives Aβ[4‐42] and Aβ[5‐42], and Aβ[1‐42] labeled with 7‐amino‐4‐methyl‐3‐coumarinylacetic acid (AMCA) at the N‐terminus using Fmoc strategy. The use of 10% anisole in Dimethylformamide/Dichloromethane (DMF/DCM) can substantially improve the purity and yield of crude Aβ[1‐42] and has been shown to be an optimal coupling condition for the synthesis of Aβ[1‐42]. Anisole is a cheap and simple aid in the synthesis of ‘difficult sequences’ where other solvents are less successful in the prevention of aggregation during the synthesis. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
3.
Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disorders even so the exact pathomechanism is still unclear. Recently, it is widely accepted that amyloid-beta peptide (Aβ) toxicity is positively linked to Aβ oligomers, which may be responsible for the initiation of AD. For this reason, AD research requires well defined aggregation state and structure of Aβ. Precursor peptide 'iso-Aβ1-42' makes it possible to use Aβ1-42 with well- defined aggregation state for in vitro and in vivo experiments. The aim of this study was to identify protein expression changes from differentiated SH-SY5Y neuroblastoma cells after treatment with oligomeric Aβ1-42 prepared in situ from 'iso-Aβ1-42'. In our experiment, a cell viability assay revealed a strong and time-dependent toxic effect of oligomeric Aβ1-42 which was supported by dramatic morphological changes. Our proteomics study also revealed numerous significant protein expression changes (22 proteins down- and 25 proteins up-regulated) after comparison of the untreated and Aβ1-42-treated cell lysates by two-dimensional electrophoresis. From the functional classification of the identified proteins, we found deregulations of proteins involved in metabolic processes, cytoskeleton organisation and protein biosynthesis and a huge number of up-regulated stress proteins displayed oligomeric Aβ1-42-induced cell stress.  相似文献   
4.
Oligomeric amyloid-β is currently of interest in amyloid-β mediated toxicity and the pathogenesis of Alzheimer's disease. Mapping the amyloid-β interaction partners could help to discover novel pathways in disease pathogenesis. To discover the amyloid-β interaction partners, we applied a protein array with more than 8100 unique recombinantly expressed human proteins. We identified 324 proteins as potential interactors of oligomeric amyloid-β. The Gene Ontology functional analysis of these proteins showed that oligomeric amyloid-β bound to multiple proteins with diverse functions both from extra and intracellular localizations. This undiscriminating binding phenotype indicates that multiple protein interactions mediate the toxicity of the oligomeric amyloid-β. The most highly impacted cellular system was the protein translation machinery. Oligomeric amyloid-β could bind to altogether 24 proteins involved in translation initiation and elongation. The binding of amyloid-β to purified rat hippocampal ribosomes validated the protein array results. More importantly, in vitro translation assays showed that the oligomeric amyloid-β had a concentration dependent inhibitory activity on translation. Our results indicate that the inhibited protein synthesis is one of the pathways that can be involved in the amyloid-beta induced neurotoxicity.  相似文献   
5.
Pr-IIGL(a), a derivative of the tetrapeptide beta-amyloid 31-34 (Abeta(31-34)), exerts controversial effects: it is toxic in a neuroblastoma culture, but it protects glial cells from the cytotoxic action of Abeta(1-42). For an understanding of this phenomenon, a new pentapeptide, RIIGL(a) was synthetized, and both compounds were studied by different physicochemical and biological methods. Transmission electron microscopic (TEM) studies revealed that Pr-IIGL(a) forms fibrillar aggregates, whereas RIIGL(a) does not form fibrils. Congo red binding studies furnished the same results. Aggregated Pr-IIGL(a) acts as a cytotoxic agent in neuroblastoma cultures, but RIIGL(a) does not display inherent toxicity. RIIGL(a) co-incubated with Abeta(1-42) inhibits the formation of mature amyloid fibres (TEM studies) and reduces the cytotoxic effect of fibrillar Abeta(1-42). These results indicate that RIIGL(a) is an effective inhibitor of both the aggregation and the toxic effects of Abeta(1-42) and can serve as a lead compound for the design of novel neuroprotective peptidomimetics.  相似文献   
6.
The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co‐localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.  相似文献   
7.
The intermediate filament (IF) synemin gene encodes three IF proteins (H 180, M 150, L 41 kDa) with overlapping distributions. Synemin M was present early with vimentin and nestin. Synemin H was found later in the nervous system and mesodermic derivatives concomitantly with angiogenesis and the migration of neural crest cells. Synemin L appeared later in neurons. A series of in vitro cell cultures were done to identify the linkage between synemin isoforms and specific cell types of the central nervous system (CNS). The neurons and glia from the brains of humans and rats were cultured and double immunostaining done with antibodies against the H/M or L synemin isoforms and neural cell types (βIII-tubulin or NeuN) or astrocyte intermediate filaments (GFAP or vimentin). In neurons of the CNS, synemin H/M were co-expressed with GFAP, vimentin or nestin in glial cells, whereas synemin L was found in neurons.  相似文献   
8.
9.
Disturbances in intraluminal endoplasmic reticulum (ER) Ca2+ concentration leads to the accumulation of unfolded proteins and perturbation of intracellular Ca2+ homeostasis, which has a huge impact on mitochondrial functioning under normal and stress conditions and can trigger cell death. Thapsigargin (TG) is widely used to model cellular ER stress as it is a selective and powerful inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases. Here we provide a representative proteome-wide picture of ER stress induced by TG in N2a neuroblastoma cells. Our proteomics study revealed numerous significant protein expression changes in TG-treated N2a cell lysates analysed by two-dimensional electrophoresis followed by mass spectrometric protein identification. The proteomic signature supports the evidence of increased bioenergetic activity of mitochondria as several mitochondrial enzymes with roles in ATP-production, tricarboxylic acid cycle and other mitochondrial metabolic processes were upregulated. In addition, the upregulation of the main ER resident proteins confirmed the onset of ER stress during TG treatment. It has become widely accepted that metabolic activity of mitochondria is induced in the early phases in ER stress, which can trigger mitochondrial collapse and subsequent cell death. Further investigations of this cellular stress response in different neuronal model systems like N2a cells could help to elucidate several neurodegenerative disorders in which ER stress is implicated.  相似文献   
10.
Amyloid peptides (Abeta) play a central role in the pathogenesis of Alzheimer's disease (AD). The aggregation of Abeta molecules leads to fibril and plaque formation. Fibrillogenesis is at the same time a marker and an indirect cause of AD. Inhibition of the aggregation of Abeta could be a realistic therapy for the illness. Beta sheet breakers (BSBs) are one type of fibrillogenesis inhibitors. The first BSB peptides were designed by Tjernberg et al. (1996) and Soto et al. (1998). These pentapeptides have proved their efficiency in vitro and in vivo. In the present study, the effects of two pentapeptide amides are reported. These compounds were designed by using the C-terminal sequence of the amyloid peptide as a template. Biological assays were applied to demonstrate efficiency. Modes of action were studied by FT-IR spectroscopy and molecular modeling methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号