首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   34篇
  2017年   3篇
  2015年   4篇
  2014年   2篇
  2013年   28篇
  2011年   10篇
  2010年   4篇
  2009年   9篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   13篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1994年   2篇
  1992年   3篇
  1990年   2篇
  1989年   4篇
  1975年   2篇
  1929年   1篇
  1926年   1篇
  1925年   1篇
  1924年   1篇
  1921年   1篇
  1920年   1篇
  1915年   2篇
  1914年   1篇
  1909年   1篇
  1902年   1篇
  1901年   1篇
  1897年   2篇
  1892年   1篇
  1891年   1篇
  1889年   1篇
  1888年   1篇
  1887年   1篇
  1883年   3篇
  1882年   5篇
  1881年   2篇
  1880年   1篇
  1879年   6篇
  1878年   2篇
  1877年   2篇
  1876年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
1.
RCC1, a regulator of mitosis, is essential for DNA replication.   总被引:25,自引:4,他引:21       下载免费PDF全文
Temperature-sensitive mutants in the RCC1 gene of BHK cells fail to maintain a correct temporal order of the cell cycle and will prematurely condense their chromosomes and enter mitosis at the restrictive temperature without having completed S phase. We have used Xenopus egg extracts to investigate the role that RCC1 plays in interphase nuclear functions and how this role might contribute to the known phenotype of temperature-sensitive RCC1 mutants. By immunodepleting RCC1 protein from egg extracts, we find that it is required for neither chromatin decondensation nor nuclear formation but that it is absolutely required for the replication of added sperm chromatin DNA. Our results further suggest that RCC1 does not participate enzymatically in replication but may be part of a structural complex which is required for the formation or maintenance of the replication machinery. By disrupting the replication complex, the loss of RCC1 might lead directly to disruption of the regulatory system which prevents the initiation of mitosis before the completion of DNA replication.  相似文献   
2.
3.
Ran is a small GTPase that is required for protein import, mRNA export, and the maintenance of nuclear structures. To gain a better understanding of Ran's role in the nucleus, we have sought to use Xenopus egg extracts for the purification and characterization of proteins from egg extracts bound with a high affinity to a glutathione-S-transferase-Ran fusion protein (GST-Ran). We found that GST-Ran associates specifically with at least 10 extract proteins. We determined the identifies of six Ran-interacting proteins (Rips), and found that they include RanBP2/Nup358, Nup153, Importin beta, hsc70, RCC1, and RanBP1. On the basis of peptide sequence, a seventh Rip (p88) seems to be similar but not identical to Fug1/RanGAP1, the mammalian Ran-GTPase-activating protein. Gel filtration analysis of endogenous extract proteins suggests that Importin beta acts as a primary GTP-Ran effector. Both Ran and Importin beta are coimmunoprecipitated by anti-p340RanBP2 antibodies in the presence of nonhydrolyzable GTP analogues, suggesting that Ran-Importin beta complexes interact with p340RanBP2. Two other Rips, p18 and p88, are coprecipitated with p340RanBP2 in a nucleotide-independent manner. Analysis of the Ran-GTPase pathway in Xenopus extracts allows the examination of interactions between Ran-associated proteins under conditions that resemble in vivo conditions more closely than in assays with purified components, and it thereby allows additional insights into the molecular mechanism of nuclear transport.  相似文献   
4.
5.
6.
Proper chromosome segregation is essential for faithful cell division and if not maintained results in defective cell function caused by the abnormal distribution of genetic information. Polo-like kinase 1–interacting checkpoint helicase (PICH) is a DNA translocase essential for chromosome bridge resolution during mitosis. Its function in resolving chromosome bridges requires both DNA translocase activity and ability to bind chromosomal proteins modified by the small ubiquitin-like modifier (SUMO). However, it is unclear how these activities cooperate to resolve chromosome bridges. Here, we show that PICH specifically disperses SUMO2/3 foci on mitotic chromosomes. This PICH function is apparent toward SUMOylated topoisomerase IIα (TopoIIα) after inhibition of TopoIIα by ICRF-193. Conditional depletion of PICH using the auxin-inducible degron (AID) system resulted in the retention of SUMO2/3-modified chromosomal proteins, including TopoIIα, indicating that PICH functions to reduce the association of these proteins with chromosomes. Replacement of PICH with its translocase-deficient mutants led to increased SUMO2/3 foci on chromosomes, suggesting that the reduction of SUMO2/3 foci requires the remodeling activity of PICH. In vitro assays showed that PICH specifically attenuates SUMOylated TopoIIα activity using its SUMO-binding ability. Taking the results together, we propose a novel function of PICH in remodeling SUMOylated proteins to ensure faithful chromosome segregation.  相似文献   
7.
8.
Xenopus egg extracts provide a powerful tool for studying the formation and function of chromosomes. Two alternative protocols are generally used to obtain mitotic chromosomes. The first one uses a direct chromatin assembly from sperm nuclei in cytostatic factor (CSF)-arrested meiotic extracts, while the second is based on transition of sperm DNA through a replication step with subsequent reestablishment of CSF arrest. In this study we show that general kinetochore structure is disrupted in chromosomes assembled directly in CSF egg extracts: The amounts of outer kinetochore proteins such as Bub1, BubR1, and Dynactin subunit p150glued are reduced and the components of the inner centromeric region (Aurora B kinase and Survivin) show compromised recruitment to centromeres. On the contrary, kinetochores on chromosomes assembled according to the second protocol closely resemble those in somatic cells. Our results indicate that the transition of sperm nuclei through interphase is an essential step for proper kinetochore assembly.  相似文献   
9.
We have analyzed the abundance of SUMO-conjugated species during the cell cycle in Xenopus egg extracts. The predominant SUMO conjugation products associated with mitotic chromosomes arose from SUMO conjugation of topoisomerase II. Topoisomerase II was modified exclusively by SUMO-2/3 during mitosis under normal circumstances, although we observed conjugation of topoisomerase II to SUMO-1 in extracts with exogenous SUMO-1 protein. Inhibition of SUMO modification by a dominant-negative mutant of the SUMO-conjugating enzyme Ubc9 (dnUbc9) did not detectably alter topoisomerase II activity, but it did increase the amount of unmodified topoisomerase II retained on mitotic chromosomes after high salt washing. dnUbc9 did not disrupt the assembly of condensed mitotic chromosomes or block progression of extracts through mitosis, but it did block the dissociation of sister chromatids at the metaphase-anaphase transition. Together, our results suggest that SUMO conjugation is important for chromosome segregation in metazoan systems, and that mobilization of topoisomerase II from mitotic chromatin may be a key target of this modification.  相似文献   
10.
SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles   总被引:1,自引:0,他引:1  
RanGAP1 was the first documented substrate for conjugation with the ubiquitin-like protein SUMO-1. However, the functional significance of this conjugation has not been fully clarified. We sought to examine RanGAP1 behavior during mitosis. We found that RanGAP1 associates with mitotic spindles and that it is particularly concentrated at foci near kinetochores. Association with kinetochores appeared soon after nuclear envelope breakdown and persisted until late anaphase, but it was lost coincident with nuclear envelope assembly in telophase. A mutant RanGAP1 protein lacking the capacity to be conjugated to SUMO-1 no longer associated with spindles, indicating that conjugation was essential for RanGAP1's mitotic localization. RanBP2, a nuclear pore protein that binds SUMO-1-conjugated RanGAP1 during interphase, colocalized with RanGAP1 on spindles, suggesting that a complex between these two proteins may be involved in mitotic targeting of RanGAP1. This report shows for the first time that SUMO-1 conjugation is required for mitotic localization of RanGAP1, and suggests that a major role of SUMO-1 conjugation to RanGAP1 may be the spatial regulation of the Ran pathway during mitosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号