首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1018篇
  免费   67篇
  2023年   3篇
  2022年   14篇
  2021年   25篇
  2020年   23篇
  2019年   21篇
  2018年   48篇
  2017年   35篇
  2016年   52篇
  2015年   71篇
  2014年   82篇
  2013年   119篇
  2012年   76篇
  2011年   69篇
  2010年   45篇
  2009年   44篇
  2008年   47篇
  2007年   55篇
  2006年   62篇
  2005年   40篇
  2004年   36篇
  2003年   24篇
  2002年   27篇
  2001年   3篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   5篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有1085条查询结果,搜索用时 750 毫秒
1.
2.
AimThe aim was to provide a dosimetric comparison between IMRT and RapidArc treatment plans with RPI index with simultaneous comparison of the treatment delivery time.BackgroundIMRT and RapidArc provide highly conformal dose distribution with good sparing of normal tissues. However, a complex spatial dosimetry of IMRT and RapidArc plans hampers the evaluation and comparison between plans calculated for the two modalities. RPI was used in this paper for treatment plan comparisons. The duration of the therapeutic session in RapidArc is reported to be shorter in comparison to therapeutic time of the other dynamic techniques. For this reasons, total treatment delivery time in both techniques was compared and discussed.Materials and methods15 patients with prostate carcinoma were randomly selected for the analysis. Two competitive treatment plans using respectively the IMRT and RapidArc techniques were computed for each patient in Eclipse planning system v. 8.6.15. RPIwin® application was used for RPI calculations for each treatment plan.Additionally, total treatment time was compared between IMRT and RapidArc plans. Total treatment time was a sum of monitor units (MU) for each treated field.ResultsThe mean values of the RPI indices were insignificantly higher for IMRT plans in comparison to rotational therapy. Comparison of the mean numbers of monitor units confirmed that the use of rotational technique instead of conventional static field IMRT can significantly reduce the treatment time.ConclusionAnalysis presented in this paper, demonstrated that RapidArc can compete with the IMRT technique in the field of treatment plan dosimetry reducing the time required for dose delivery.  相似文献   
3.
4.
5.
6.
The various classifications of the orchid tribeNeottieae are reviewed and a new classification is proposed that divides the tribe into three subtribes,Neottiinae, Limodorinae, andCephalantherinae, based primarily on characters of the column (gynostemium). A cladistic analysis illustrates that these three subtribes are more closely related to one another than either is to any other group in subfam.Neottioideae, although there are very few apomorphic characters for the tribe. Pollination biology is also discussed showing links between breeding systems and distribution. There is also a possible role between column and labellum morphology and the emergence of a deceptive pollination syndrome from one of reward.  相似文献   
7.
The effects of aluminium (Al) ions on the metabolism of root apical meristems were examined in 4-day-old seedlings of two cereals which differed in their tolerance to Al: wheat cv. Grana (Al-sensitive) and rye cv. Dakowskie Nowe (Al tolerant). During a 24 h incubation period in nutrient solutions containing 0.15 mM and 1.0 mM of Al for wheat and rye, respectively, the activity of first two enzymes in the pentose phosphate pathway (G-6-PDH and 6-PGDH) decreased in the sensitive cultivar. In the tolerant cultivar activities of these enzymes increased initially, then decreased slightly, and were at control levels after 24 h. In the Al-sensitive wheat cultivar a 50% reduction in the activity of 6-phosphogluconate dehydrogenase was observed in the presence of Al. Changes in enzyme activity were accompanied by changes in levels of G-6-P- the initial substrate in the pentose phosphate pathway. When wheat was exposed for 16 h to a nutrient solution containing aluminium, a 90% reduction in G-6-P concentration was observed. In the Al-tolerant rye cultivar, an increase and subsequently a slight decrease in G-6-P concentration was detected, and after 16 h of Al-stress the concentration of this substrate was still higher than in control plants. This dramatic Al-induced decrease in G-6-P concentration in the Al-sensitive wheat cultivar was associated with a decrease in both the concentration of glucose in the root tips as well as the activity of hexokinase, an enzyme which is responsible for phosphorylation of glucose to G-6-P. However, in the Al-tolerant rye cultivar, the activity of this enzyme remained at the level of control plants during Al-treatment, and the decrease in the concentration of glucose occurred at a much slower rate than in wheat. These results suggest that aluminium ions change cellular metabolism of both wheat and rye root tips. In the Al-sensitive wheat cultivar, irreversible disturbances induced by low doses of Al in the nutrient solution appear very quickly, whereas in the Al-tolerant rye cultivar, cellular metabolism, even under severe stress conditions, is maintained for a long time at a level which allows for root elongation to continue.Abbreviations G-6-PDH glucose-6-phosphate dehydrogenase - 6-PGDH 6-phosphogluconate dehydrogenase - G-6-P glucose-6-phosphate - TEA triethanolamine  相似文献   
8.
9.
The COVID‐19 pandemic has triggered numerous scientific activities aimed at understanding the SARS‐CoV‐2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X‐ray, cryo‐EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To help biomedical researchers, who may not necessarily be experts in structural biology, navigate through the flood of structural models, we have created an online resource, covid19.bioreproducibility.org, that aggregates expert‐verified information about SARS‐CoV‐2‐related macromolecular models. In this article, we describe this web resource along with the suite of tools and methodologies used for assessing the structures presented therein.  相似文献   
10.
Leflunomide (LFN) is a well-known immunomodulatory and anti-inflammatory prodrug of teriflunomide (TFN). Due to pyrimidine synthesis inhibition TFN also exhibits potent anticancer effect. Because, there is the strict coupling between the pyrimidine synthesis and the mitochondrial respiratory chain, the oxygen level could modify the cytostatic TNF effect.The aim of the study was to evaluate the cytostatic effect of pharmacologically achievable teriflunomide (TFN) concentrations at physiological oxygen levels, i.e. 1% hypoxia and 10% tissue normoxia compared to 21%oxygen level occurred in routine cell culture environment.The TFN effect was evaluated using TB, MTT and FITC Annexin tests for human primary (SW480) and metastatic (SW620) colon cancer cell lines at various oxygen levels.We demonstrated significant differences between proliferation, survival and apoptosis at 1, 10 and 21% oxygen in primary and metastatic colon cancer cell lines (SW480, SW620) under TFN treatment. The cytostatic TFN effect was more pronounced at hypoxia compared to tissue and atmospheric normoxia in both cancer cell lines, however metastatic cells were more resistant to antiproliferative and proapoptotic TFN action. The early apoptosis was predominant in physiological oxygen tension while in atmospheric normoxia the late apoptosis was induced.Our findings showed that anticancer TFN effect is more strong in physiological oxygen compared to atmospheric normoxia. It suggests that results obtained from in vitro studies could be underestimated. Thus, it gives assumption for future comprehensive studies at real oxygen environment involving TNF use in combination with other antitumor agents affecting oxygen-dependent pyrimidine synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号