首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   740篇
  免费   44篇
  国内免费   2篇
  786篇
  2023年   3篇
  2022年   24篇
  2021年   38篇
  2020年   15篇
  2019年   23篇
  2018年   34篇
  2017年   26篇
  2016年   31篇
  2015年   38篇
  2014年   40篇
  2013年   62篇
  2012年   62篇
  2011年   62篇
  2010年   33篇
  2009年   31篇
  2008年   41篇
  2007年   41篇
  2006年   38篇
  2005年   30篇
  2004年   25篇
  2003年   32篇
  2002年   20篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有786条查询结果,搜索用时 46 毫秒
1.
The authors studied changes in the synthesis of nucleic acids (RNA, DNA) and protein by a mesophilic strain ofEscherichia coli B and a psychrophilic strain ofPseudomonas fluorescens at a low incubation temperature giving tenfold prolongation of the generation time. It was found that lowering the incubation temperature was followed by an increase in the intracellular nucleic acid content during the lag phase and the phase of accelerated growth, in which maximum nucleic acid (NA) values were reached. As a result, the total NA level in the cell also remained relatively high during further proliferation, when the increase in NA (particularly RNA) slows down at low incubation temperatures. Proteosynthesis, however, fell in the mesophilic culture. The smaller effect of a lowered temperature on DNA biosynthesis was manifested specifically in the lag phase ofEscherichia coli, in which disproportion developed between the amount of DNA (which was synthesized at a relatively higher rate) and RNA; this was afterwards equalized by a temporary break in DNA production. Pronounced differences in the given types of biosynthesis were found only in the mesophilic culture, while at suboptimal temperatures the metabolism of the psychrophilic strain slowed down but no marked changes occurred.  相似文献   
2.
3.
L1 is among the few adhesion molecules that favors repair after trauma in the adult central nervous system of vertebrates by promoting neuritogenesis and neuronal survival, among other beneficial features. In the peripheral nervous system, L1 is up-regulated in Schwann cells and regrowing axons after nerve damage, but the functional consequences of this expression remain unclear. Our previous study of L1-deficient mice in a femoral nerve injury model showed an unexpected improved functional recovery, attenuated motoneuronal cell death, and enhanced Schwann cell proliferation, being attributed to the persistent synthesis of neurotrophic factors. On the other hand, transgenic mice over-expressing L1 in neurons led to improved remyelination, but not improved functional recovery. The present study was undertaken to investigate whether the monoclonal L1 antibody 557 that triggers beneficial L1 functions in vitro would trigger these also in femoral nerve repair. We analyzed femoral nerve regeneration in C57BL/6J mice that received this antibody in a hydrogel filled conduit connecting the cut and sutured nerve before its bifurcation, leading to short-term release of antibody by diffusion. Video-based quantitative analysis of motor functions showed improved recovery when compared to mice treated with conduits containing PBS in the hydrogel scaffold, as a vehicle control. This improved recovery was associated with attenuated motoneuron loss, remyelination and improved precision of preferential motor reinnervation. We suggest that function-triggering L1 antibodies applied to the lesion site at the time of injury over a limited time period will not only be beneficial in peripheral, but also central nervous system regeneration.  相似文献   
4.
The translation of genes encoded in the mitochondrial genome requires specific machinery that functions in the organelle. Among the many mutations linked to human disease that affect mitochondrial translation, several are localized to nuclear genes coding for mitochondrial aminoacyl-transfer RNA synthetases. The molecular significance of these mutations is poorly understood, but it is expected to be similar to that of the mutations affecting mitochondrial transfer RNAs. To better understand the molecular features of diseases caused by these mutations, and to improve their diagnosis and therapeutics, we have constructed a Drosophila melanogaster model disrupting the mitochondrial seryl-tRNA synthetase by RNA interference. At the molecular level, the knockdown generates a reduction in transfer RNA serylation, which correlates with the severity of the phenotype observed. The silencing compromises viability, longevity, motility and tissue development. At the cellular level, the knockdown alters mitochondrial morphology, biogenesis and function, and induces lactic acidosis and reactive oxygen species accumulation. We report that administration of antioxidant compounds has a palliative effect of some of these phenotypes. In conclusion, the fly model generated in this work reproduces typical characteristics of pathologies caused by mutations in the mitochondrial aminoacylation system, and can be useful to assess therapeutic approaches.  相似文献   
5.
6.
The pedicel is a structure that connects the phoretic deutonymph of Uropodina mites with its carrier and enables dispersal. The shapes, lengths and diameters of pedicels formed by Uropoda orbicularis, Trichouropoda ovalis, Uroobovella pulchella and Uroobovella nova were studied by scanning and light microscopy. Pedicels of U. orbicularis and T. ovalis have the shape of a straight stalk. In U. pulchella, the pedicel is extremely short, irregularly shaped and composed of homogeneous material. The longest pedicel is found in U. nova and it may be helically coiled in this species. The length of the pedicel is positively correlated with deutonymph body size between species, but not within species. Pedicels of U. orbicularis and U. pulchella have the largest diameter. The pedicel diameter in U. orbicularis and T. ovalis is inversely proportional to its length, but not in U. nova and U. pulchella. The constituent of pedicel stems in U. pulchella is homogeneous, whereas in U. orbicularis and T. ovalis it contains a bundle of tightly packed fibres. In U. nova coiled pedicels are comprised of two layered materials of different electron density, one of which is electron lucid and located peripherally. Hypotheses on the origin of the pedicel are proposed.  相似文献   
7.
Plant Cell, Tissue and Organ Culture (PCTOC) - Somatic embryogenesis is a biotechnological tool with high application potential in the in vitro propagation and regeneration of crop plants, such as...  相似文献   
8.
Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods.  相似文献   
9.

Background

A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment.

Results

Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP.

Conclusions

We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.  相似文献   
10.
Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号