首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
The Escherichia coli arginine repressor (ArgR) is an l -arginine-dependent DNA-binding protein that controls expression of the arginine biosynthetic genes and is required as an accessory protein in Xer site-specific recombination at cer and related recombination sites in plasmids. Site-directed mutagenesis was used to isolate two mutants of E. coli ArgR that were defective in arginine binding. Results from in vivo and in vitro experiments demonstrate that these mutants still act as repressors and bind their specific DNA sequences in an arginine-independent manner. Both mutants support Xer site-specific recombination at cer. One of the mutant proteins was purified and shown to bind to its DNA target sequences in vitro with different affinity and as a different molecular species to wild-type ArgR.  相似文献   
2.
3.
4.
5.
Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.  相似文献   
6.

Background  

Salmonella enterica is a facultative intracellular pathogen that replicates within a membrane-bound compartment termed Salmonella containing vacuole (SCV). The biogenesis of SCV requires Salmonella type III protein secretion/translocation system and their effector proteins which are translocated into host cells to exploit the vesicle trafficking pathways. SseF is one of these effectors required for SCV formation and Intracellular Salmonella replication through unknown mechanisms.  相似文献   
7.
Salmonella type III secreted SipC possesses dual functions: translocation of effectors and actin modulation. The biological significance of SipC's actin nucleation activity in Salmonella-induced actin cytoskeleton rearrangements has not been studied. We report here the delineation of the actin nucleation activity from the effector translocation activity of SipC. Our data show that the central amino acid region (residues: 201-220) is essential for its actin nucleation activity and the C-terminal amino acid region (321-409) is required for translocation of effectors. A SipC nucleation-deficient mutant, which maintained its effector translocation activity, was obtained. This nucleation-deficient mutant had significantly reduced ability to induce actin cytoskeleton rearrangements, resulting in lower bacterial invasion into HeLa cells. Contrary to a previous report, we found that the purified recombinant wild-type SipC(199-409) protein is monomeric in solution by size exclusion chromatography coupled with multiangle laser light scattering assays (SEC-LS). Our data established that the actin nucleation activity of SipC plays a vital role in Salmonella-induced membrane ruffles and subsequent bacteria invasion.  相似文献   
8.
Salmonella translocate bacterial effectors into host cells to confer bacterial entry and survival. It is not known how the host cells cope with the influx of these effectors. We report here that the Salmonella effector, SopA, interacts with host HsRMA1, a ubiquitin E3 ligase with a previously unknown function. SopA is ubiquitinated and degraded by the HsRMA1-mediated ubiquitination pathway. A sopA mutant escapes out of the Salmonella-containing vacuoles less frequently to the cytosol than wild type Salmonella in HeLa cells in a HsRMA1-dependent manner. Our data suggest that efficient bacterial escape into the cytosol of epithelial cells requires HsRMA1-mediated SopA ubiquitination and contributes to Salmonella-induced enteropathogenicity.  相似文献   
9.
为了绘制沙棘H3K9乙酰化修饰图谱,确定H3K9乙酰化修饰所调控的基因,该实验通过Western blot验证抗体与组蛋白的结合能力和ChIP-seq验证抗体富集效率,获得全基因组范围内沙棘H3K9乙酰化修饰图谱和调控基因。实验结果表明,H3K9ac抗体与复合物具有较强的结合能力。对富集到的DNA片段进行高通量测序,分别获得2.2×10~7和3.6×10~7条原始序列;唯一比对序列广泛分布于沙棘基因组中,并且在结构基因中的两端具有明显的富集。对富集区进行峰的预测结果显示,共预测出1 011个峰;对峰所处部位基因进行功能预测结果发现,H3K9ac对于沙棘细胞代谢和信号转导基因的表达具有重要调控作用。沙棘片段化DNA的富集以及高通量测序结果证明,抗体能够用于研究沙棘的组蛋白修饰类型,并且绘制了沙棘第一张H3K9乙酰化修饰遗传图谱草图,鉴定出沙棘H3K9乙酰化修饰所调控的基因,为今后研究组蛋白修饰对沙棘基因表达的调控方式奠定了基础。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号