首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
Biogeochemistry - Spectroscopy is a powerful means of increasing the availability of soil data necessary for understanding carbon cycling in a changing world. Here, we develop a calibration...  相似文献   
2.
Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.  相似文献   
3.
Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012–2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.  相似文献   
4.
Human demand for livestock products has increased rapidly during the past few decades largely due to dietary transition and population growth, with significant impact on climate and the environment. The contribution of ruminant livestock to greenhouse gas (GHG) emissions has been investigated extensively at various scales from regional to global, but the long‐term trend, regional variation and drivers of methane (CH4) emission remain unclear. In this study, we use Intergovernmental Panel on Climate Change (IPCC) Tier II guidelines to quantify the evolution of CH4 emissions from ruminant livestock during 1890–2014. We estimate that total CH4 emissions in 2014 was 97.1 million tonnes (MT) CH4 or 2.72 Gigatonnes (Gt) CO2‐eq (1 MT = 1012 g, 1 Gt = 1015 g) from ruminant livestock, which accounted for 47%–54% of all non‐CO2 GHG emissions from the agricultural sector. Our estimate shows that CH4 emissions from the ruminant livestock had increased by 332% (73.6 MT CH4 or 2.06 Gt CO2‐eq) since the 1890s. Our results further indicate that livestock sector in drylands had 36% higher emission intensity (CH4 emissions/km2) compared to that in nondrylands in 2014, due to the combined effect of higher rate of increase in livestock population and low feed quality. We also find that the contribution of developing regions (Africa, Asia and Latin America) to the total CH4 emissions had increased from 51.7% in the 1890s to 72.5% in the 2010s. These changes were driven by increases in livestock numbers (LU units) by up to 121% in developing regions, but decreases in livestock numbers and emission intensity (emission/km2) by up to 47% and 32%, respectively, in developed regions. Our results indicate that future increases in livestock production would likely contribute to higher CH4 emissions, unless effective strategies to mitigate GHG emissions in livestock system are implemented.  相似文献   
5.
Amazon droughts have impacted regional ecosystem functioning as well as global carbon cycling. The severe dry‐season droughts in 2005 and 2010, driven by Atlantic sea surface temperature (SST) anomaly, have been widely investigated in terms of drought severity and impacts on ecosystems. Although the influence of Pacific SST anomaly on wet‐season precipitation has been well recognized, it remains uncertain to what extent the droughts driven by Pacific SST anomaly could affect forest greenness and photosynthesis in the Amazon. Here, we examined the monthly and annual dynamics of forest greenness and photosynthetic capacity when Amazon ecosystems experienced an extreme drought in 2015/2016 driven by a strong El Niño event. We found that the drought during August 2015–July 2016 was one of the two most severe meteorological droughts since 1901. Due to the enhanced solar radiation during this drought, overall forest greenness showed a small increase, and 21.6% of forests even greened up (greenness index anomaly ≥1 standard deviation). In contrast, solar‐induced chlorophyll fluorescence (SIF), an indicator of vegetation photosynthetic capacity, showed a significant decrease. Responses of forest greenness and photosynthesis decoupled during this drought, indicating that forest photosynthesis could still be suppressed regardless of the variation in canopy greenness. If future El Niño frequency increases as projected by earth system models, droughts would result in persistent reduction in Amazon forest productivity, substantial changes in tree composition, and considerable carbon emissions from Amazon.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号