首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   10篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   11篇
  2010年   4篇
  2009年   3篇
  2008年   11篇
  2007年   12篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1992年   4篇
  1985年   1篇
  1983年   1篇
  1979年   2篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
A well saturated genomic map is a necessity for a breeding program based on marker assisted selection. To this end, we are developing genomic maps for cowpea (Vigna unguiculata 2N = 22) and mung bean (Vigna radiata 2N = 22) based on restriction fragment length polymorphism (RFLP) markers. Using these maps, we have located major quantitative trait loci (QTLs) for seed weight in both species. Two unlinked genomic regions in cowpea contained QTLs accounting for 52.7% of the variation for seed weight. In mung bean there were four unlinked genomic regions accounting for 49.7% of the variation for seed weight. In both cowpea and mung bean the genomic region with the greatest effect on seed weight spanned the same RFLP markers in the same linkage order. This suggests that the QTLs in this genomic region have remained conserved through evolution. This inference is supported by the observation that a significant interaction (i.e., epistasis) was detected between the QTL(s) in the conserved region and an unlinked RFLP marker locus in both species.  相似文献   
2.
3.
4.
5.
Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo.  相似文献   
6.
7.
8.
Morris CA  Moazed D 《Cell》2007,128(4):647-650
Centromere assembly provides a unique example of how elaborate protein structures can be assembled onto DNA, independent of sequence, and then stably propagated through numerous cell divisions. Here, we review the possible epigenetic strategies that organisms ranging from yeast to human use to assemble and propagate active centromeres.  相似文献   
9.
It is not understood how immune inflammation influences the pathogenesis of severe acute respiratory syndrome (SARS). One area of strong controversy is the role of interferon (IFN) responses in the natural history of SARS. The fact that the majority of SARS patients recover after relatively moderate illness suggests that the prevailing notion of deficient type I IFN-mediated immunity, with hypercytokinemia driving a poor clinical course, is oversimplified. We used proteomic and genomic technology to systematically analyze host innate and adaptive immune responses of 40 clinically well-described patients with SARS during discrete phases of illness from the onset of symptoms to discharge or a fatal outcome. A novel signature of high IFN-alpha, IFN-gamma, and IFN-stimulated chemokine levels, plus robust antiviral IFN-stimulated gene (ISG) expression, accompanied early SARS sequelae. As acute illness progressed, SARS patients entered a crisis phase linked to oxygen saturation profiles. The majority of SARS patients resolved IFN responses at crisis and expressed adaptive immune genes. In contrast, patients with poor outcomes showed deviated ISG and immunoglobulin gene expression levels, persistent chemokine levels, and deficient anti-SARS spike antibody production. We contend that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity. The potential for the use of the gene signatures we describe in this study to better assess the immunopathology and clinical management of severe viral infections, such as SARS and avian influenza (H5N1), is therefore worth careful examination.  相似文献   
10.
Liou GG  Tanny JC  Kruger RG  Walz T  Moazed D 《Cell》2005,121(4):515-527
Assembly of silent chromatin domains in budding yeast involves the deacetylation of histone tails by Sir2 and the association of the Sir3 and Sir4 proteins with hypoacetylated histone tails. Sir2 couples deacetylation to NAD hydrolysis and the synthesis of a metabolite, O-acetyl-ADP-ribose (AAR), but the functional significance of NAD hydrolysis or AAR, if any, is unknown. Here we examine the association of the Sir2, Sir3, and Sir4 proteins with each other and histone tails. Our analysis reveals that deacetylation of histone H4-lysine 16 (K16), which is critical for silencing in vivo, is also critical for the binding of Sir3 and Sir4 to histone H4 peptides in vitro. Moreover, AAR itself promotes the association of multiple copies of Sir3 with Sir2/Sir4 and induces a dramatic structural rearrangement in the SIR complex. These results suggest that Sir2 activity modulates the assembly of the SIR complex through both histone deacetylation and AAR synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号