首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   11篇
  103篇
  2024年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   11篇
  2009年   8篇
  2008年   8篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
  1975年   2篇
  1963年   1篇
  1947年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
2.
The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.  相似文献   
3.
As primary targets of a variety of abused drugs G-protein-coupled dopamine receptors in the brain play an important role in mediating the various drug-induced alterations in neural and psychological processes thought to underlie the transition from voluntary drug use to habitual and progressively compulsive drug-taking. This review considers the functional involvement of the five major dopamine receptor subtypes in drug reinforcement and reward and discusses the development of addiction as a series of learning transitions from initial goal-directed behaviour to pathological stimulus–response habits in which drug-seeking behaviours are automatically elicited and maintained by cues and stimuli associated with drug rewards.  相似文献   
4.
The signal sequence within polypeptide chains that designates whether a protein is to be anchored to the membrane by a glycosylphosphatidylinositol (GPI) anchor is characterized by a carboxyl-terminal hydrophobic domain preceded by a short hydrophilic spacer linked to the GPI anchor attachment (omega) site. The hydrophobic domain within the GPI anchor signal sequence is very similar to a transmembrane domain within a stop transfer sequence. To investigate whether the GPI anchor signal sequence is translocated across or integrated into the endoplasmic reticulum membrane we studied the translocation, GPI anchor addition, and glycosylation of different variants of a model GPI-anchored protein. Our results unequivocally demonstrated that the hydrophobic domain within a GPI signal cannot act as a transmembrane domain and is fully translocated even when followed by an authentic charged cytosolic tail sequence. However, a single amino acid change within the hydrophobic domain of the GPI-signal converts it into a transmembrane domain that is fully integrated into the endoplasmic reticulum membrane. These results demonstrated that the translocation machinery can recognize and differentiate subtle changes in hydrophobic sequence allowing either full translocation or membrane integration.  相似文献   
5.
One popular way of measuring visual attentional processes in the rat is using 5-choice serial reaction time task (5-CSRTT). This paradigm requires subjects to detect brief flashes of light presented in a pseudorandom order in one of five spatial locations over a large number of trials. For this task, the animals are trained for approximately 30-40 daily sessions during which they gradually learn to respond in the appropriate aperture within a certain amount of time. If they fail to respond, respond in the wrong hole or at an inappropriate time, a short period of darkness (time-out) is presented as punishment and no reward is delivered. The 5-CSRTT provides the possibility to test the effects of various neural, pharmacological and behavioral manipulations on discrete and somewhat independent measures of behavioral control, including accuracy of discrimination, impulsivity, perseverative responses and response latencies.  相似文献   
6.
    
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
7.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   
8.
Abstract

Several 4-substituted-1-β-D-ribofuranosyl-3-hydroxypyrazoles were prepared as structural analogs of pyrazofurin. Glycosylation of the TMS derivative of ethyl 3(5)-hydroxypyrazole-4-carboxylate (3) with 1-0-acetyl-2,3,5-tri-0-benzoyl-D-ribofuranose in the presence of TMS-triflate gave predominantly ethyl 3-hydroxy-1-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)pyrazole-4-carboxylate (4a), which on subsequent ammonolysis furnished 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (5). Benzylation of 4a with benzyl bromide and further ammonolysis gave 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxamide (8a). Catalytic (Pd/C) hydrogenation of 8a afforded yet another high yield route to 5. Saponification of the ester function of ethyl 3-benzyloxy-1-β-D-ribofuranosylpyrazole-4-carboxylate (7b) gave the corresponding 4-carboxylic acid (6a). Phosphorylation of 8a and subsequent debenzylation of the intermediate 11a gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamide 5′-phosphate (11b). Dehydration of 3-benzyloxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carboxamide (8b) with POCl3 provided the corresponding 4-carbonitrile derivative (10a), which on debenzylation with Cl3SiI gave 3-hydroxy-1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile (13). Reaction of 13 with H2S/pyridine and subsequent deacetylation gave 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-thiocarboxamide (12b). Similarly, treatment of 13 with NH2OH afforded 3-hydroxy-1-β-D-ribofuranosylpyrazole-4-carboxamidoxime (14a), which on catalytic (Pd/C) hydrogenation gave the corresponding 4-carboxamidine derivative (14b). The structural assignment of these pyrazole ribonucleosides was made by single-crystal X-ray analysis of 6a. None of these compounds exhibited any significant antitumor or antiviral activity in cell culture.  相似文献   
9.
As uncontrolled cell proliferation requires nucleotide biosynthesis, inhibiting enzymes that mediate nucleotide biosynthesis constitutes a rational approach to the management of oncological diseases. In practice, however, results of this strategy are mixed and thus elucidation of the mechanisms by which cancer cells evade the effect of nucleotide biosynthesis restriction is urgently needed. Here we explored the notion that intrinsic differences in cancer cell cycle velocity are important in the resistance toward inhibition of inosine monophosphate dehydrogenase (IMPDH) by mycophenolic acid (MPA). In short-term experiments, MPA treatment of fast-growing cancer cells effectively elicited G0/G1 arrest and provoked apoptosis, thus inhibiting cell proliferation and colony formation. Forced expression of a mutated IMPDH2, lacking a binding site for MPA but retaining enzymatic activity, resulted in complete resistance of cancer cells to MPA. In nude mice subcutaneously engrafted with HeLa cells, MPA moderately delayed tumor formation by inhibiting cell proliferation and inducing apoptosis. Importantly, we developed a lentiviral vector–based Tet-on label-retaining system that enables to identify, isolate and functionally characterize slow-cycling or so-called label-retaining cells (LRCs) in vitro and in vivo. We surprisingly found the presence of LRCs in fast-growing tumors. LRCs were superior in colony formation, tumor initiation and resistance to MPA as compared with fast-cycling cells. Thus, the slow-cycling compartment of cancer seems predominantly responsible for resistance to MPA.  相似文献   
10.
The shrimp, Crangon crangon (L.), has been reared from hatching to the late juvenile phase, under a circadian (LD 12 : 12) and two non-circadian (LD 8 : 8 and LD random) light-dark cycles. During the zoeal phase, survival in the non-circadian regimes was markedly lower than in the control circadian treatments. This effect supports the hypothesis that the entraining influence of daily environmental cycles is important in coordinating the various physiological processes within the animal. There was no evidence, however, that growth and morphological development were affected in the non-circadian regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号