首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   5篇
  175篇
  2024年   1篇
  2022年   2篇
  2020年   3篇
  2019年   6篇
  2018年   8篇
  2017年   4篇
  2016年   10篇
  2015年   8篇
  2014年   8篇
  2013年   17篇
  2012年   22篇
  2011年   12篇
  2010年   10篇
  2009年   13篇
  2008年   8篇
  2007年   8篇
  2006年   6篇
  2005年   1篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
1.
The queen conch, Strombus gigas, is a marine resource of ecological and economical importance in the Caribbean region. Given its importance in this region, and the critical status of most populations, the reproductive biology of this species has been studied to support management decisions. It was from these studies that a generalized sporozoan infection was detected. This study describes the geographic distribution of a coccidian (Apicomplexa) parasite infecting the digestive gland of S. gigas throughout the Caribbean. The parasite was present in every location sampled. Based on histological analysis, the parasites from all locations are similar and appear to complete their life cycle within the digestive gland. The highest occurrence of the parasites was registered in samples from Puerto Rico (54 parasites per field) and Martinique (45 parasites per field). The lowest incidence was registered on the Mexican coast of Yucatan peninsula, at Alacranes and Chinchorro with 17 parasites per field. Data showed significant differences among sites (Kruskal Wallis H = 106.957; p ? 0.05). The abundance of parasites found in the digestive ducts and in the faeces suggests the liberation of parasites to the environment. A gradual decrease in abundance was found from East to West of the Caribbean sea.  相似文献   
2.
3.
4.
    
The potential role and function of gastrokine-1 (GNK1) in smooth muscle cells is investigated in this work by first establishing a preparative protocol to obtain this native protein from freshly dissected chicken gizzard. Some unexpected biochemical properties of gastrokine-1 were deduced by producing specific polyclonal antibody against the purified protein. We focused on the F-actin interaction with gastrokine-1 and the potential role and function in smooth muscle contractile properties.

Background

GNK1 is thought to provide mucosal protection in the superficial gastric epithelium. However, the actual role of gastrokine-1 with regards to its known decreased expression in gastric cancer is still unknown. Recently, trefoil factors (TFF) were reported to have important roles in gastric epithelial regeneration and cell turnover, and could be involved in GNK1 interactions. The aim of this study was to evaluate the role and function of GNK1 in smooth muscle cells.

Methodology/Principal Findings

From fresh chicken gizzard smooth muscle, an original purification procedure was used to purify a heat soluble 20 kDa protein that was sequenced and found to correspond to the gastrokine-1 protein sequence containing one BRICHOS domain and at least two or possibly three transmembrane regions. The purified protein was used to produce polyclonal antibody and highlighted the smooth muscle cell distribution and F-actin association of GNK1 through a few different methods.

Conclusion/Significance

Altogether our data illustrate a broader distribution of gastrokine-1 in smooth muscle than only in the gastrointestinal epithelium, and the specific interaction with F-actin highlights and suggests a new role and function of GNK1 within smooth muscle cells. A potential role via TFF interaction in cell-cell adhesion and assembly of actin stress fibres is discussed.  相似文献   
5.
We had previously observed that drastic increases in protein consumption greatly modified hepatic protein anabolism in rats, but the confounding effects of other macronutrient changes or a moderate protein increase to generate the same modifications have not yet been established. This study examined the metabolic and hormonal responses of rats subjected to 14-day isoenergetic diets containing normal, intermediate, or high-protein levels (NP: 14% of energy, IP: 33%, HP: 50%) and different carbohydrate (CHO) to fat ratios within each protein level. Fasted or fed rats (n = 104) were killed after the injection of a flooding dose of (13)C-valine. The hepatic protein content increased in line with the dietary protein level (P < 0.05). The hepatic fractional synthesis rates (FSR) of protein were significantly influenced by both the protein level and the nutritional state (fasted vs. fed) (P < 0.0001) but not by the CHO level, reaching on average 110%/day, 92%/day, and 83%/day in rats fed the NP, IP, and HP diets, respectively. The FSR of plasma albumin and muscle did not differ between diets, while feeding tended to increase muscle FSR. Proteolysis, especially the proteasome-dependent system, was down-regulated in the fed state in the liver when protein content increased. Insulin decreased with the CHO level in the diet. Our results reveal that excess dietary protein lowers hepatic constitutive, but not exported, protein synthesis rates, independently of the other macronutrients, and related changes in insulin levels. This response was observed at the moderate levels of protein intake (33%) that are plausible in a context of human consumption.  相似文献   
6.
    
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the “acidic/alternative” pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.  相似文献   
7.
Heavy metals are required as nutrients for essential functions in microorganisms. However, higher concentrations of these cations are generally toxic and may produce contrasting effects on living organisms. Enterobacter liquefaciens strain C-1, a bacterium isolated from the Moa mine in Cuba, is able to survive in the presence of high concentrations of heavy metals. The proteomes of Enterobacter liquefaciens strain C-1, grown under aerobic conditions in the presence and absence of Co (II) were compared using two-dimensional gel electrophoresis analysis in the isoelectric point range of 4-7 and the mass range of 15-120 kDa. Significant changes in the expression level (> two-fold) were detected for 13 spots: seven and six were up- and down-regulated, respectively. Because the genome of this bacterium is unknown, identification by peptide mass fingerprinting only succeeded in four cases and most of the cross-species identifications were supported by de novo sequencing of tryptic peptides followed by sequence alignment using the MS BLAST program. Twelve different proteins were identified, ten are involved in cellular antioxidant defence probably induced by the presence of Co (II). This is the first step towards understanding the role of proteins participating in the mechanism of resistance to heavy metals in this bacterium.  相似文献   
8.
The purpose of this work was to examine whether changes in dietary protein levels could elicit differential responses of tissue proteolysis and the pathway involved in this response. In rats fed with a high protein diet (55%) for 14?days, the liver was the main organ where adaptations occurred, characterized by an increased protein pool and a strong, meal-induced inhibition of the protein breakdown rate when compared to the normal protein diet (14%). This was associated with a decrease in the key-proteins involved in expression of the ubiquitin-proteasome and autophagy pathway gene and a reduction in the level of hepatic ubiquitinated protein. In hepatocytes, we demonstrated that the increase in amino acid (AA) levels was sufficient to down-regulate the ubiquitin proteasome pathway, but this inhibition was more potent in the presence of insulin. Interestingly, AICAR, an adenosine monophosphate-activated protein kinase (AMPK) activator, reversed the inhibition of protein ubiquination induced by insulin at high AA concentrations. Rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, reversed the inhibition of protein ubiquination induced by a rise in insulin levels with both high and low AA concentrations. Moreover, in both low and high AA concentrations in the presence of insulin, AICAR decreased the mTOR phosphorylation, and in the presence of both AICAR and rapamycin, AICAR reversed the effects of rapamycin. These results demonstrate that the inhibition of AMPK and the activation of mTOR transduction pathways, are required for the down-regulation of protein ubiquitination in response to high amino acid and insulin concentrations.  相似文献   
9.

Background

While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia.

Methodology/Principal Findings

A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue.

Conclusions/Significance

This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号