首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   10篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   9篇
  2014年   9篇
  2013年   12篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   8篇
  2008年   9篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   10篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1976年   1篇
  1971年   2篇
  1966年   2篇
  1947年   1篇
  1946年   1篇
  1945年   2篇
  1942年   1篇
  1938年   4篇
  1928年   1篇
  1922年   1篇
  1919年   5篇
  1918年   2篇
  1917年   4篇
  1916年   5篇
  1915年   2篇
  1912年   1篇
  1908年   2篇
  1905年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
1.
2.
3.
The function of the N-terminal amino acids of Saccharomyces cerevisiae hexokinase II was studied in vivo using strains producing a form of hexokinase II lacking its first 15 amino acids (short form). This short form of hexokinase II was produced from a fusion between the promoter region of the PGK1 gene and the HXK2 coding sequence except the first 15 codons. As expected, the in vitro analysis of the short form protein by gel filtration chromatography indicates that the short protein does not form dimers under conditions where the wild-type protein dimerizes. Kinetic studies show that the enzymatic activities are very similar to wild-type behavior. The physiological experiments performed on the strains containing the fusion allele demonstrate that the short form of the enzyme is similar to the wild-type both in terms of phosphorylation of hexoses and glucose repression. We conclude that the N-terminal amino acids of hexokinase II are not required in vivo either for phosphorylation of hexoses or for glucose repression.  相似文献   
4.
5.
Amplification of immunohistochemical markers received considerable attention during the 1980s and 1990s. The amplification approach was largely abandoned following the development of antigen retrieval and reporter amplification techniques, because the latter were incorporated more easily into high throughput automated procedures in industrial and diagnostic laboratories. There remain, however, a number of instances where marker amplification still has much to offer. Consequently, we examined experimentally the utility of an optimized marker amplification technique in diagnostically relevant tissue where either the original signal strength was low or positive sites were visible, but sparsely distributed. Marker amplification in the former case not only improved the visibility of existing positive sites, but also revealed additional sites that previously were undetectable. In the latter case, positive sites were rendered more intense and therefore more easily seen during low magnification examination of large areas of tissue.  相似文献   
6.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   
7.

Background

Detection of visual contours (strings of small oriented elements) is markedly poor in schizophrenia. This has previously been attributed to an inability to group local information across space into a global percept. Here, we show that this failure actually originates from a combination of poor encoding of local orientation and abnormal processing of visual context.

Methods

We measured the ability of observers with schizophrenia to localise contours embedded in backgrounds of differently oriented elements (either randomly oriented, near-parallel or near-perpendicular to the contour). In addition, we measured patients’ ability to process local orientation information (i.e., report the orientation of an individual element) for both isolated and crowded elements (i.e., presented with nearby distractors).

Results

While patients are poor at detecting contours amongst randomly oriented elements, they are proportionally less disrupted (compared to unaffected controls) when contour and surrounding elements have similar orientations (near-parallel condition). In addition, patients are poor at reporting the orientation of an individual element but, again, are less prone to interference from nearby distractors, a phenomenon known as visual crowding.

Conclusions

We suggest that patients’ poor performance at contour perception arises not as a consequence of an “integration deficit” but from a combination of reduced sensitivity to local orientation and abnormalities in contextual processing. We propose that this is a consequence of abnormal gain control, a phenomenon that has been implicated in orientation-selectivity as well as surround suppression.  相似文献   
8.
9.
Rhodamines were first produced in the late 19th century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.  相似文献   
10.
Malachite green was discovered independently by two researchers in Germany in the 19th century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号