首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  国内免费   2篇
  2021年   2篇
  2020年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有24条查询结果,搜索用时 171 毫秒
1.
Low temperature is a major limiting factor in rice growth and development. Mapping of quantitative trait loci (QTLs) controlling cold tolerance is important for rice breeding. Recent studies have suggested that bulked segregant analysis (BSA) combined with next-generation sequencing (NGS) can be an efficient and cost-effective way for QTL mapping. In this study, we employed NGS-assisted BSA to map QTLs conferring cold tolerance at the seedling stage in rice. By deep sequencing of a pair of large DNA pools acquired from a very large F3 population (10,800 individuals), we obtained ∼450,000 single nucleotide polymorphisms (SNPs) after strict screening. We employed two statistical methods for QTL analysis based on these SNPs, which yielded consistent results. Six QTLs were mapped on chromosomes 1, 2, 5, 8 and 10. The three most significant QTLs on chromosomes 1, 2 and 8 were validated by comparison with previous studies. Two QTLs on chromosomes 2 and 5 were also identified previously, but at the booting stage rather than the seedling stage, suggesting that some QTLs may function at different developmental stages, which would be useful for cold tolerance breeding in rice. Compared with previously reported QTL mapping studies for cold tolerance in rice based on the traditional approaches, the results of this study demonstrated the advantages of NGS-assisted BSA in both efficiency and statistical power.  相似文献   
2.
3.
4.
5.
6.
评估生态保护红线斑块受人类干扰的潜在退化风险,可为差异化、精细化的红线监管方案拟定提供科学依据。以安徽省域为例,基于InVEST模型,定量分析了2017年农田、城镇、矿区、交通干线等风险源对红线内各生境受体的干扰退化风险度。结论如下:全省和红线内受人类干扰退化风险由高到低的生境类型依次是农田、草地、湿地和林地。生态保护红线内人类干扰退化风险较全省平均水平更低。全省整体干扰退化风险指数呈现"北高南低"的格局。高风险区集中在合肥城区、芜马城区、淮蚌城区周边,两淮矿区及周边,低风险区则主要分布在皖西和皖南山区、巢湖湖区、沿江沿淮湖区等。干扰退化风险较高的红线斑块主要为合肥北部淠河——滁河干渠和董大水库水源地红线,铜陵市郊区棋盘山红线,长江干流芜马段自然岸线红线,淮河干流淮蚌段水体及岸线红线,阜阳城区颍河及周边湿地红线,皇藏峪西部宿淮交界处山体红线,宿州市砀山县城区东南部红线等,建议重点监管,防控人类干扰导致的生态风险。  相似文献   
7.
The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT)n · (GA)n dinucleotide repeat (n ≈ 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT)n tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, orangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion.  相似文献   
8.
Arylalkylamine N-acetyltransferase (AANAT) plays a crucial role in synchronizing internal biological functions to circadian and circannual changes. Generally speaking, only one copy of AANAT gene has been found in mammals, however, three independent duplications of this gene were detected in several cetartiodactyl lineages (i.e., Suidae, Hippopotamidae, and Pecora), which originated in the middle Eocene, a geological period characterized with the increased climate seasonality. Lineage-specific expansions of AANAT and the associated functional enhancement in these lineages strongly suggest an improvement in regulating photoperiodic response to adapt to seasonal climate changes. In contrast, independent inactivating mutations or deletions of the AANAT locus were identified in the four pineal-deficient clades (cetaceans, sirenians, xenarthrans, and pangolins). Loss of AANAT function in cetaceans and sirenians could disrupt the sleep-promoting effects of pineal melatonin, which might contribute to increasing wakefulness, adapting these clades to underwater sleep. The absence of AANAT and pineal glands in xenarthrans and pangolins may be associated with their body temperature maintenance. The present work demonstrates a far more complex and intriguing evolutionary pattern and functional diversity of mammalian AANAT genes than previously thought and provides further evidence for understanding AANAT evolution as driven by rhythmic adaptations in mammals.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号