首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   13篇
  2024年   1篇
  2023年   1篇
  2022年   14篇
  2021年   16篇
  2020年   6篇
  2019年   7篇
  2018年   12篇
  2017年   17篇
  2016年   9篇
  2015年   14篇
  2014年   19篇
  2013年   25篇
  2012年   24篇
  2011年   17篇
  2010年   11篇
  2009年   6篇
  2008年   15篇
  2007年   21篇
  2006年   18篇
  2005年   11篇
  2004年   10篇
  2003年   11篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
1.
We isolated a mouse genomic clone that hybridized with small RNA present in the cytoplasm of the brain. The RNA was about 150 nucleotides long. This RNA seemed to be specific to the brain, since it was not found in the liver or kidney. The clone DNA contained a sequence homologous to 82-nucleotide "identifier" core sequence of cDNA clones of rat. The sequence contained a split promoter for RNA polymerase III and was flanked by a 12-nucleotide direct repeat (ATAAATAATTTA).  相似文献   
2.
Euglena contains glutamate:glyoxylate aminotransferase (GGT) both in mitochondria and in cytosol. Both isoforms were separated from each other by DEAE-cellulose chromatography. The mitochondrial enzyme had an apparent Km of 1.9 mM for glutamate and the cytosolic enzyme 52.6 mM. Mitochondrial GGT was further purified by ammonium sulfate fractionation, isoelectric focusing, and gel chromatography. It had a molecular weight of 141,000 and an isoelectric point of pH 4.88; the optimum pH was 8.5. Its apparent Km values for glutamate and for glyoxylate were 2.0 and 0.25 mM, respectively. In addition to glutamate, mitochondrial GGT used 5-hydroxytryptophan, tryptophan, and cysteine as amino donors in the transamination to glyoxylate. Alanine did not support the activity. The relative activity of the enzyme for amino acceptors on the transamination from glutamate was 4-hydroxyphenylpyruvate greater than phenylpyruvate greater than glyoxylate greater than hydroxypyruvate. Pyruvate and 2-oxoglutarate were not used in the reaction. Evidence that GGT functions mainly in the irreversible transamination between glutamate and glyoxylate is presented. The functional significance of GGT in the glycolate pathway of Euglena is also discussed.  相似文献   
3.
Factor IX BM Nagoya (IX Nagoya) is a natural mutant of factor IX responsible for severe hemophilia B. A patient with this mutant is characterized by a markedly prolonged ox brain prothrombin time. IX Nagoya was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that treatment of IX Nagoya with factor XIa/Ca2+ resulted in cleavage only at the Arg145-Ala146 bond. Reversed-phase high performance liquid chromatography of a trypsin digest of IX Nagoya showed an aberrant peptide, which was further digested with proteinase Asp-N. Primary structure analysis of one of the Asp-N peptides revealed that Arg180 is replaced by Trp. An essentially complete (99%) amino acid sequence of IX Nagoya was obtained by sequencing fragments derived from a lysyl endopeptidase digest in which no other substitutions in the catalytic triad or substrate binding site were found. We also found that IX Nagoya is activated by alpha-chymotrypsin or rat mast cell chymase by monitoring the rate of factor X activation using a fluorogenic peptide substrate in the presence of factor VIII, phospholipids, and Ca2+. These results indicate that the substitution of Arg180 by Trp impairs the cleavage by factor XIa required for activation of this zymogen and that the substitution causes hemophilia BM.  相似文献   
4.
Daiki Takahashi 《Autophagy》2020,16(4):765-766
ABSTRACT

Targeted degradation is a promising new modality in drug discovery that makes it possible to reduce intracellular protein levels with small molecules. It is a complementary approach to the conventional protein knockdown typically used in laboratories and may offer a way to approach the currently undruggable human proteome. Recently, the first autophagy-mediated degraders, called AUTACs, were developed based on observations in a xenophagy study.  相似文献   
5.
6.
Reconstructed myocardial tissue still does not have enough pulsatile contraction. It is well known that fetal and mature neonatal cardiomyocytes utilize glucose and lipid, respectively, as their energy substrates, and that cultured ones mainly use glucose in spite of their age comparable to neonate ones, probably due to insufficient supply of lipids from culture medium. In the present study, we compared 7 saturated, 6 monounsaturated, and 11 polyunsaturated fatty acid contents in cultured cardiomyocytes (Cul group) with those in fetal (Fet group, approximately 17 d after impregnation) and neonatal (Neo group, 9 d old) rats, where the age of the Cul cells were set nearly equal to the Neo ones. Saturated fatty acid contents in the Cul group were generally lower than those in the Fet group and were close to those in the Neo group, except for C12:0 of which content was highest in the Neo group. Monounsaturated fatty acid contents in the Cul group were generally lower than those in the Fet group but similar to or higher than those in the Neo group, except for C24:1n-9 of which content was again highest in the Neo group. In contrast, most of polyunsaturated fatty acid (PUFA) contents in the Cul group appeared lower than those in both the Fet and Neo groups, and differences in 5 of 10 detected PUFAs were significant between the Cul and Neo groups. The results suggest that PUFA contents in cultured cardiomyocytes might be insufficient to exert enough contractile ability. In conclusion, it could be necessary for cultured cardiomyocytes to uptake more lipid; PUFAs in particular.  相似文献   
7.
Hepatitis C virus (HCV) establishes a chronic infection in 70-80% of infected individuals. Many researchers have examined the effect of human leukocyte antigen (HLA) on viral persistence because of its critical role in the immune response against exposure to HCV, but almost all studies have proven to be inconclusive. To identify genetic risk factors for chronic HCV infection, we analyzed 458,207 single nucleotide polymorphisms (SNPs) in 481 chronic HCV patients and 2,963 controls in a Japanese cohort. Next, we performed a replication study with an independent panel of 4,358 cases and 1,114 controls. We further confirmed the association in 1,379 cases and 25,817 controls. In the GWAS phase, we found 17 SNPs that showed suggestive association (P < 1 × 10-5). After the first replication study, we found one intronic SNP in the HLA-DQ locus associated with chronic HCV infection, and when we combined the two studies, the association reached the level of genome-wide significance. In the second replication study, we again confirmed the association (P combined = 3.59 × 10−16, odds ratio [OR] = 0.79). Subsequent analysis revealed another SNP, rs1130380, with a stronger association (OR=0.72). This nucleotide substitution causes an amino acid substitution (R55P) in the HLA-DQB1 protein specific to the DQB1*03 allele, which is common worldwide. In addition, we confirmed an association with the previously reported IFNL3-IFNL4 locus and propose that the effect of DQB1*03 on HCV persistence might be affected by the IFNL4 polymorphism. Our findings suggest that a common amino acid substitution in HLA-DQB1 affects susceptibility to chronic infection with HCV in the Japanese population and may not be independent of the IFNL4 genotype.  相似文献   
8.

Introduction

To date, there have been no prospective studies examining the effect of coffee consumption on serum alanine aminotransferase (ALT) level among individuals infected with the hepatitis C virus (HCV). We conducted a hospital-based cohort study among patients with chronic HCV infection to assess an association between baseline coffee consumption and subsequent ALT levels for 12 months.

Materials and Methods

From 1 August 2005 to 31 July 2006, total 376 HCV-RNA positive patients were recruited. A baseline questionnaire elicited information on the frequency of coffee consumption and other caffeine-containing beverages. ALT level as a study outcome was followed through the patients’ medical records during 12 months. The association between baseline beverage consumption and subsequent ALT levels was evaluated separately among patients with baseline ALT levels within normal range (≤45 IU/L) and among those with higher ALT levels (>45 IU/L).

Results

Among 229 patients with baseline ALT levels within normal range, 186 (81%) retained normal ALT levels at 12 months after recruitment. Daily drinkers of filtered coffee were three times more likely to preserve a normal ALT level than non-drinkers (OR=2.74; P=0.037). However, decaffeinated coffee drinkers had a somewhat inverse effect for sustained normal ALT levels, with marginal significance (OR=0.26; P=0.076). In addition, among 147 patients with higher baseline ALT levels, 39 patients (27%) had ALT reductions of ≥20 IU/L at 12 months after recruitment. Daily drinkers of filtered coffee had a significantly increased OR for ALT reduction (OR=3.79; P=0.034). However, in decaffeinated coffee drinkers, OR could not be calculated because no patients had ALT reduction.

Conclusion

Among patients with chronic HCV infection, daily consumption of filtered coffee may have a beneficial effect on the stabilization of ALT levels.  相似文献   
9.
The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号