首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   26篇
  354篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   11篇
  2014年   9篇
  2013年   17篇
  2012年   27篇
  2011年   26篇
  2010年   17篇
  2009年   12篇
  2008年   26篇
  2007年   32篇
  2006年   22篇
  2005年   18篇
  2004年   16篇
  2003年   23篇
  2002年   10篇
  2001年   3篇
  2000年   12篇
  1999年   5篇
  1998年   2篇
  1997年   6篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有354条查询结果,搜索用时 15 毫秒
1.
Protein Nε‐acylation is emerging as a ubiquitous post‐translational modification. In Corynebacterium glutamicum, which is utilized for industrial production of l ‐glutamate, the levels of protein acetylation and succinylation change drastically under the conditions that induce glutamate overproduction. Here, the acylation of phosphoenolpyruvate carboxylase (PEPC), an anaplerotic enzyme that supplies oxaloacetate for glutamate overproduction was characterized. It was shown that acetylation of PEPC at lysine 653 decreased enzymatic activity, leading to reduced glutamate production. An acetylation‐mimic (KQ) mutant of K653 showed severely reduced glutamate production, while the corresponding KR mutant showed normal production levels. Using an acetyllysine‐incorporated PEPC protein, we verified that K653‐acetylation negatively regulates PEPC activity. In addition, NCgl0616, a sirtuin‐type deacetylase, deacetylated K653‐acetylated PEPC in vitro. Interestingly, the specific activity of PEPC was increased during glutamate overproduction, which was blocked by the K653R mutation or deletion of sirtuin‐type deacetylase homologues. These findings suggested that deacetylation of K653 by NCgl0616 likely plays a role in the activation of PEPC, which maintains carbon flux under glutamate‐producing conditions. PEPC deletion increased protein acetylation levels in cells under glutamate‐producing conditions, supporting the hypothesis that PEPC is responsible for a large carbon flux change under glutamate‐producing conditions.  相似文献   
2.
The aim of this study was to assess the adhesion of Bifidobacterium strains to acidic carbohydrate moieties of porcine colonic mucin. Mucins were extracted and purified via gel filtration chromatography followed by density-gradient ultracentrifugation. The presence of sulfated and sialylated carbohydrates in mucins was shown by enzyme-linked immunosorbent assays using PGM34 and HMC31 monoclonal antibodies (mAbs), respectively. Adhesion of Bifidobacterium strains to mucin preparations was markedly affected by the degree of purification. In eight of 22 strains, we observed increased adhesion to mucin preparations purified by ultracentrifugation. Moreover, in some of these eight strains, adhesion to mucin was reduced by pretreatment with sulfatase and/or sialidase, and competitively inhibited by pretreatment with PGM34 and/or HCM31 mAbs. Our results showed that some Bifidobacterium strains adhered to sulfo- and/or sialomucin and were able to recognize carbohydrate structures of the mAbs epitopes.  相似文献   
3.
A high-throughput screen (HTS) of the MLPCN library using a homogenous fluorescence polarization assay identified a small molecule as a first-in-class direct inhibitor of Keap1–Nrf2 protein–protein interaction. The HTS hit has three chiral centers; a combination of flash and chiral chromatographic separation demonstrated that Keap1-binding activity resides predominantly in one stereoisomer (SRS)-5 designated as ML334 (LH601A), which is at least 100× more potent than the other stereoisomers. The stereochemistry of the four cis isomers was assigned using X-ray crystallography and confirmed using stereospecific synthesis. (SRS)-5 is functionally active in both an ARE gene reporter assay and an Nrf2 nuclear translocation assay. The stereospecific nature of binding between (SRS)-5 and Keap1 as well as the preliminary but tractable structure–activity relationships support its use as a lead for our ongoing optimization  相似文献   
4.
5.
I Ashikawa  N Kurata  S Saji  Y Umehara  T Sasaki 《Génome》1999,42(2):330-337
To refine the current physical map of rice, we have established a restriction fragment fingerprinting method for identifying overlap between pairs of rice yeast artificial chromosome (YAC) clones and defining the physical arrangement of YACs within contiguous fragments (contigs). In this method, Southern blots of rice YAC DNAs digested with a restriction endonuclease are probed with a rice microsatellite probe, (GGC)5. The probe produces a unique fingerprint profile characteristic of each YAC clone. The profile is then digitized, processed in a computer, and a statistic that represents the degree of overlap between two YACs is calculated. The statistics have been used to detect overlaps among YAC clones, thereby filling a gap between two neighbouring contigs and organizing overlapping rice YAC clones into contiguous fragments. We applied this method to rearranging YACs that had previously been assigned to rice chromosome 6 by anchoring with RFLP markers.  相似文献   
6.
Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we generated and analyzed SMS1-null mice. SMS1-null mice exhibited moderate neonatal lethality, reduced body weight, and loss of fat tissues mass, suggesting that they might have metabolic abnormality. Indeed, analysis on glucose metabolism revealed that they showed severe deficiencies in insulin secretion. Isolated mutant islets exhibited severely impaired ability to release insulin, dependent on glucose stimuli. Further analysis indicated that mitochondria in mutant islet cells cannot up-regulate ATP production in response to glucose. We also observed additional mitochondrial abnormalities, such as hyperpolarized membrane potential and increased levels of reactive oxygen species (ROS) in mutant islets. Finally, when SMS1-null mice were treated with the anti-oxidant N-acetyl cysteine, we observed partial recovery of insulin secretion, indicating that ROS overproduction underlies pancreatic β-cell dysfunction in SMS1-null mice. Altogether, our data suggest that SMS1 is important for controlling ROS generation, and that SMS1 is required for normal mitochondrial function and insulin secretion in pancreatic β-cells.  相似文献   
7.
Many assays aimed to test the inhibitory effects of synthetic molecules, and naturally occurring products on the neuraminidase activity exploit the hydrolysis of 2'-O-(4-methylumbelliferyl)-N-acetylneuraminic acid (4-MUNANA). The amount of the released product, 4-methylumbelliferone (4-MU), is then measured fluorimetrically. The authors attempted an analysis of the inhibitory properties of 35 naturally occurring flavonoids on neuraminidase N3, where only 29 of them were sufficiently soluble in the assay medium. During the analysis, the authors noticed a strong quenching effect due to the test compounds on the fluorescence of 4-MU. The quenching constants for the flavonoids were determined according to the Stern-Volmer approach. The extent of fluorescence reduction due to quenching and the magnitude of the fluorescence reduction measured in the inhibition assays were comparable: for 11 of 29 compounds, the two values were found to be coincident within the experimental uncertainty. These data were statistically analyzed for correlation by calculating the pertinent Pearson correlation coefficient. Inhibition and quenching were found to be positively correlated (r = 0.71, p(uncorr) = 1.5 × 10(-5)), and the correlation was maintained for the whole set of tested compounds. Altogether, the collected data imply that all of the tested flavonoids could produce false-positive results in the neuraminidase inhibition assay using 4-MUNANA as a substrate.  相似文献   
8.
To investigate the role of N-terminal domains of plant disease resistance proteins in membrane targeting, the N termini of a number of Arabidopsis and flax disease resistance proteins were fused to green fluorescent protein (GFP) and the fusion proteins localized in planta using confocal microscopy. The N termini of the Arabidopsis RPP1-WsB and RPS5 resistance proteins and the PBS1 protein, which is required for RPS5 resistance, targeted GFP to the plasma membrane, and mutation of predicted myristoylation and potential palmitoylation sites resulted in a shift to nucleocytosolic localization. The N-terminal domain of the membrane-attached Arabidopsis RPS2 resistance protein was targeted incompletely to the plasma membrane. In contrast, the N-terminal domains of the Arabidopsis RPP1-WsA and flax L6 and M resistance proteins, which carry predicted signal anchors, were targeted to the endomembrane system, RPP1-WsA to the endoplasmic reticulum and the Golgi apparatus, L6 to the Golgi apparatus, and M to the tonoplast. Full-length L6 was also targeted to the Golgi apparatus. Site-directed mutagenesis of six nonconserved amino acid residues in the signal anchor domains of L6 and M was used to change the localization of the L6 N-terminal fusion protein to that of M and vice versa, showing that these residues control the targeting specificity of the signal anchor. Replacement of the signal anchor domain of L6 by that of M did not affect L6 protein accumulation or resistance against flax rust expressing AvrL567 but removal of the signal anchor domain reduced L6 protein accumulation and L6 resistance, suggesting that membrane attachment is required to stabilize the L6 protein.  相似文献   
9.
10.
We isolated a cDNA encoding mitogen-activated protein kinase kinase kinase alpha, designated LjM3Kalpha, from Lotus japonicus, a model legume. The gene was expressed constitutively in roots, root nodules, and shoots. We also identified a novel nodulin gene, LjNUF, that shows specific expression in nodules. LjNUF resembles the C-terminal half of a hypothetical protein (pir//D85436), the N-terminal half of which is similar to a portion of mitogen-activated protein kinase kinase kinase gamma. Although LjNUF was predicted to be a secreted protein, its function remains to be clarified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号