首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   8篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2020年   7篇
  2019年   7篇
  2018年   12篇
  2017年   7篇
  2016年   10篇
  2015年   11篇
  2014年   13篇
  2013年   17篇
  2012年   21篇
  2011年   17篇
  2010年   7篇
  2009年   8篇
  2008年   13篇
  2007年   12篇
  2006年   13篇
  2005年   11篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1992年   2篇
  1987年   1篇
  1970年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
1.
Protein kinase C (PKC), which plays a pivotal role in lymphocyte activation, represents a homologous family of at least nine proteins. Seven genes that encode PKC proteins have been identified. Since the regulatory properties and substrate specificities of the isoforms are not identical in vitro, it is possible that each isoform plays a unique role in cell activation. Toward an understanding of the role of PKC isoforms in lymphocyte activation we have studied the expression of mRNA encoding six of the isoforms (alpha, beta, gamma, delta, epsilon, and zeta) in T cell clones and B cell lines. PKC isoform phenotyping was done by MAPPing using isoform-specific primers and slot-blot analyses of mRNA were performed using specific probes. T cell clones and B cell lines were determined to express levels of the delta, epsilon, and zeta isoforms of PKC that were detectable by MAPPing. Plasmacytomas did not express PKC-beta message detectable by MAPPing. Slot blot analyses and Western blot analyses with peptide-specific antibody confirmed that B cell plasmacytomas did not express PKC-beta mRNA or protein. T cell clones and B cell lines were similar in that none expressed PKC-gamma. In cells that expressed PKC isoforms that were detectable by the MAPPing protocol, there was heterogeneity in the relative abundance of isoform mRNA (PKC-delta and -beta) and protein (PKC-beta and -epsilon). Such diversity of isoform expression could be responsible for the differential responsiveness of lymphocyte clones to activating stimuli.  相似文献   
2.
Reconstructed myocardial tissue still does not have enough pulsatile contraction. It is well known that fetal and mature neonatal cardiomyocytes utilize glucose and lipid, respectively, as their energy substrates, and that cultured ones mainly use glucose in spite of their age comparable to neonate ones, probably due to insufficient supply of lipids from culture medium. In the present study, we compared 7 saturated, 6 monounsaturated, and 11 polyunsaturated fatty acid contents in cultured cardiomyocytes (Cul group) with those in fetal (Fet group, approximately 17 d after impregnation) and neonatal (Neo group, 9 d old) rats, where the age of the Cul cells were set nearly equal to the Neo ones. Saturated fatty acid contents in the Cul group were generally lower than those in the Fet group and were close to those in the Neo group, except for C12:0 of which content was highest in the Neo group. Monounsaturated fatty acid contents in the Cul group were generally lower than those in the Fet group but similar to or higher than those in the Neo group, except for C24:1n-9 of which content was again highest in the Neo group. In contrast, most of polyunsaturated fatty acid (PUFA) contents in the Cul group appeared lower than those in both the Fet and Neo groups, and differences in 5 of 10 detected PUFAs were significant between the Cul and Neo groups. The results suggest that PUFA contents in cultured cardiomyocytes might be insufficient to exert enough contractile ability. In conclusion, it could be necessary for cultured cardiomyocytes to uptake more lipid; PUFAs in particular.  相似文献   
3.
Abstract

Due to the unique rigid and small steric feature of cyclopropane, cyclopropane nucleosides (CPNs) in which the ribose (deoxyribose) of nucleosides are replaced by a hydroxy-substituted cyclopropane, are of great biological interest. Novel 1,1,2-trisubstituted cyclopropane nucleosides were synthesized in enantiomerically pure forms as potential antiviral agents. In the synthesis, two cyclopropane tosylates, which were prepared from chiral cyclopropane lactones previously reported by us, were used effectively as common intermediates for the CPNs. These CPNs are also potentially useful as nucleoside units to incorporate into oligonucleotides in nucleic acids chemotherapy studies.  相似文献   
4.
The kidney, the metanephros, is formed by reciprocal interactions between the metanephric mesenchyme and the ureteric bud, the latter of which is derived from the Wolffian duct that elongates in the rostral-to-caudal direction. Sall1 expressed in the metanephric mesenchyme is essential for ureteric bud attraction in kidney development. Sall4, another member of the Sall gene family, is required for maintenance of embryonic stem cells and establishment of induced pluripotent stem cells, and is thus considered to be one of the stemness genes. Sall4 is also a causative gene for Okihiro syndrome and is essential for the formation of many organs in both humans and mice. However, its expression and role in kidney development remain unknown, despite the essential role of Sall1 in the metanephric mesenchyme. Here, we report that mouse Sall4 is expressed transiently in the Wolffian duct-derived lineage, and is nearly complementary to Sall1 expression. While Sall4 expression is excluded from the Wolffian duct at embryonic (E) day 9.5, Sall4 is expressed in the Wolffian duct weakly in the mesonephric region at E10.5 and more abundantly in the caudal metanephric region where ureteric budding occurs. Sall4 expression is highest at E11.5 in the Wolffian duct and ureteric bud, but disappears by E13.5. We further demonstrate that Sall4 deletion in the Wolffian duct and ureteric bud does not cause any apparent kidney phenotypes. Therefore, Sall4 is expressed transiently in the caudal Wolffian duct and the ureteric bud, but is dispensable for kidney development in mice.  相似文献   
5.
There is a growing body of evidence regarding cell competition between normal and mutant mammalian cells, which suggest that it may play a defensive role in the early phase of carcinogenesis. In vitro study in the past has shown that overexpression of vimentin in normal epithelial cells at the contact surface with transformed cells is essential for the cell competition involved in epithelial defense against cancer. In this study, we attempted to examine cell competition in human tissue in vivo by investigating surgically resected human fallopian tubes that contain p53 signatures and serous tubal intraepithelial lesions (STILs), a linear expansion of p53-immunopositive/TP53 mutant tubal epithelial cells that are considered as precursors of pelvic high grade serous carcinoma. Immunofluorescence double staining for p53 and the cell competition marker vimentin was performed in 21 sections of human fallopian tube tissue containing 17 p53 signatures and 4 STILs. The intensities of vimentin expression at the interface between p53-positive cells at the end of the p53 signature/STIL and adjacent p53-negative normal tubal epithelial cells were compared with the background tubal epithelium. As a result, the average vimentin intensity at the interfaces relative to the background intensity was 1.076 (95% CI, 0.9412 – 1.211 for p53 signature and 0.9790 (95% CI, 0.7206 – 1.237) for STIL. Thus, it can be concluded that overexpression of the cell competition marker vimentin are not observed in human tissue with TP53 alterations.  相似文献   
6.
Capnocytophaga ochracea is present in the dental plaque biofilm of patients with periodontitis. Biofilm cells change their phenotype through quorum sensing in response to fluctuations in cell-population density. Quorum sensing is mediated by auto-inducers (AIs). AI-2 is involved in intercellular signaling, and production of its distant precursor is catalyzed by LuxS, an enzyme involved in the activated methyl cycle. Our aim was to clarify the role of LuxS in biofilm formation by C. ochracea. Two luxS-deficient mutants, TmAI2 and LKT7, were constructed from C. ochracea ATCC 27872 by homologous recombination. The mutants produced significantly less AI-2 than the wild type. The growth rates of these mutants were similar to that of the wild-type in both undiluted Tryptic soy broth and 0.5 × Tryptic soy broth. However, according to crystal violet staining, they produced significantly less biofilm than the wild type. Confocal laser scanning microscopy and scanning electron microscopy showed that the biofilm of the TmAI2 strain had a rougher structure than that of the wild type. Complementation of TmAI-2 with extrinsic AI-2 from the culture supernatant of wild-type strain did not restore biofilm formation by the TmAI2 strain, but complementation of LKT7 strain with luxS partially restored biofilm formation. These results indicate that LuxS is involved in biofilm formation by C. ochracea, and that the attenuation of biofilm formation by the mutants is likely caused by a defect in the activated methyl cycle rather than by a loss of AI-2.  相似文献   
7.
Because DNA double-strand breaks (DSBs) are one of the most cytotoxic DNA lesions and often cause genomic instability, precise repair of DSBs is vital for the maintenance of genomic stability. Xrs2/Nbs1 is a multi-functional regulatory subunit of the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex, and its function is critical for the primary step of DSB repair, whether by homologous recombination (HR) or non-homologous end joining. In human NBS1, mutations result truncation of the N-terminus region, which contains a forkhead-associated (FHA) domain, cause Nijmegen breakage syndrome. Here we show that the Xrs2 FHA domain of budding yeast is required both to suppress the imprecise repair of DSBs and to promote the robust activation of Tel1 in the DNA damage response pathway. The role of the Xrs2 FHA domain in Tel1 activation was independent of the Tel1-binding activity of the Xrs2 C terminus, which mediates Tel1 recruitment to DSB ends. Both the Xrs2 FHA domain and Tel1 were required for the timely removal of the Ku complex from DSB ends, which correlates with a reduced frequency of imprecise end-joining. Thus, the Xrs2 FHA domain and Tel1 kinase work in a coordinated manner to maintain DSB repair fidelity.  相似文献   
8.
Bisorbicillinol, which is isolated from Trichoderma sp. USF2690, is an inhibitor of β-hexosaminidase release and tumor necrosis factor (TNF)-α, and Interleukin (IL)-4 secretion from rat basophilic leukemia (RBL-2H3) cells, with IC50 values of 2.8?μM, 2.9?μM and 2.8?μM respectively. We showed that the inhibitory mechanism of β-hexosaminidase release and TNF-α secretion involved inhibition of Lyn, a tyrosine kinase. The inhibitory activities of bisorbicillinol indicate that this compound is a new candidate anti-allergic agent.  相似文献   
9.
The cDNA encoding a novel member (NT-ERS1) of ethylene receptor family of tobacco (Nicotiana tabacum L.) was obtained by a combination of RT-PCR and 5'-/3'-RACE cloning. The cDNA was 2,092 nucleotides long and had an open reading frame of 1,911 bp encoding 637 amino acids. The deduced polypeptide lacked a response regulator domain, indicating that the ethylene receptor belongs to an ERS-group. The amino acid sequence was similar to respective members of the tobacco ethylene receptor family: 67.8% to NT-ETR1, 39.1% to NTHK1 and 31.1% to NTHK2. Comparison of amino acid sequence suggested that NT-ERS1 is the counterpart of Nr in the ethylene receptor family of tomato, which belongs to Solanaceae as does tobacco. Northern blot analysis showed that mRNA of NT-ERS1 was present in leaf, shoot and root tissues, and accumulated in leaves treated with exogenous ethylene. A mutated NT-ERS1 cDNA transgene, obtained by introducing one nucleotide substitution into NT-ETR1 cDNA, conferred ethylene insensitivity in tobacco plants, indicating that the translation product of the cDNA actually functioned in the plants.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号