首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   6篇
  40篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1978年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有40条查询结果,搜索用时 0 毫秒
1.
2.
CD45 is known to have tyrosine phosphatase activity for signal transduction of T cells. Immunomodulation of CD45 has been tried to prevent T cell-mediated graft rejection in organ transplantation. In vitro study showed that blockade of CD45RB, an alternative splicing isoform of CD45, inhibited proliferative response of T cells after allogeneic stimulation. Treatment with a monoclonal antibody (mAb) against CD45RB induced long-term allograft acceptance in some mouse organ transplantation models. In a rat heart allograft model, a single injection of anti-rat CD45 (RT7) mAb which bound to allomorphic region of RT7 also induced allograft acceptance. CD45/RT7 is also a useful tool of targeting hematopoietic cells, because of the selective expression on all hematopoietic cells. There are two allomorphic forms of CD45 (RT7a and RT7b) in the rat. Using RT7 system, a rat heart allograft model from RT7a donors to RT7b recipients was designed to test functional relevance of graft-associated hematopoietic cells (microchimerism) to allograft acceptance. Then donor-derived hematopoietic cells were selectively depleted using anti-RT7a mAb in vivo. Depletion on day 0 prevented allograft acceptance and was associated with severe acute or chronic graft rejection, while depletion on day 18 after transplantation showed no effect. This experimental study showed a crucial role of microchimerism in induction phase of allograft acceptance. In conclusion, the CD45/RT7 system is not only a target molecule for tolerance induction, but also an useful tool for experimental models in transplantation immunology. In this review, we introduce basic properties of CD45 and recent results with manipulation of CD45.  相似文献   
3.
Complement activation represents a crucial innate defense mechanism to invading microorganisms, but there is an eminent lack of understanding of the separate contribution of the different complement activation pathways to the host response during sepsis. We therefore investigated different innate host immune responses during cecal ligation and puncture (CLP)-induced sepsis in mice lacking either the alternative (fD(-/-)) or classical (C1q(-/-)) complement activation pathway. Both knockout mice strains showed a significantly reduced survival and increased organ dysfunction when compared with control mice. Surprisingly, fD(-/-) mice demonstrated a compensated bacterial clearance capacity as control mice at 6 h post CLP, whereas C1q(-/-) mice were already overwhelmed by bacterial growth at this time point. Interestingly, at 24 h after CLP, fD(-/-) mice failed to clear bacteria in a way comparable to control mice. However, both knockout mice strains showed compromised C3 cleavage during sepsis. Investigating potential causes for this discrepancy, we were able to demonstrate that despite normal bacterial clearance capacity early during the onset of sepsis, fD(-/-) mice displayed increased inflammatory cytokine generation and neutrophil recruitment into lungs and blood when compared with both control- and C1q(-/-) mice, indicating a potential loss of control over these immune responses. Further in vitro experiments revealed a strongly increased Nf-κB activation capacity in isolated neutrophils from fD(-/-) mice, supporting this hypothesis. Our results provide evidence for the new concept that the alternative complement activation pathway exerts a distinctly different contribution to the innate host response during sepsis when compared with the classical pathway.  相似文献   
4.
Intravital fluorescence microscopy (IVM) is a predestined tool for investigating the fate of leukocytes during the process of leukocyte recruitment. In the present study, the commonly used dye for this purpose, rhodamine 6G, and carboxyfluorescein diacetate succinimidyl ester (CFDA‐SE) were compared for leukocytes labelling with respect to suitability for IVM studies. Their potential in labelling different leukocytes subpopulations as well as their fluorescence intensities were assessed by flow cytometry revealing distinct differences between both dyes. These differences had a profound impact on their application for in vivo imaging of leukocyte‐endothelium interactions. In summary, CFDA‐SE revealed superior in labelling leukocytes for in vivo microscopy with respect to image quality. In addition, we could show the efficiency of CFDA‐SE also under disease condition in an animal model of sepsis. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
5.
Semliki Forest virus inhibits phosphatidylethanolamine biosynthesis in baby hamster kidney-21 cells 6 h after infection. Viral infection reduced the incorporation of [1,2-14C]-ethanolamine into intact cells by approximately 50%. A similar reduction in the activity of the ethanolaminephosphotransferase (EC 2.7.8.1) was also observed. The apparent Km for CDPethanolamine was 60 muM for the microsomal enzymes from infected or mock-infected cells. In addition, exogenous diglyceride only stimulated by 1.5-fold the ethanolaminephosphotransferase from virus- or mock-infected cells, whereas the same diglyceride preparations stimulated the cholinephosphotransferase (EC 2.7.8.2) from baby hamster kidney cells by sixfold. Generation of endogenous diglyceride by pretreatment of the microsomes with phospholipase C (EC 3.1.4.3) stimulated the activity of the cholinephosphotransferase but not the ethanolaminephosphotranferase. Semliki Forest virus does not inhibit all microsomal enzymes, since the activities of NADH- K3Fe(CN)6 reductase and NADH dehydrogenase (EC 1.6.99.3) were not affected. The ethanolaminephosphotransferase from virus- and mock-infected cells showed similar profiles of activity as a function of temperature; this result and other studies suggest that that membranous environment of the ethanolaminephosphotransferase was not significantly modified by the virus.  相似文献   
6.
Reduced precipitation treatments often are used in field experiments to explore the effects of drought on plant productivity and species composition. However, in seasonally snow-covered regions reduced precipitation also reduces snow cover, which can increase soil frost depth, decrease minimum soil temperatures and increase soil freeze–thaw cycles. Therefore, in addition to the effects of reduced precipitation on plants via drought, freezing damage to overwintering plant tissues at or below the soil surface could further affect plant productivity and relative species abundances during the growing season. We examined the effects of both reduced rainfall (via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily grasslands) within the framework of the International Drought Experiment, a coordinated distributed experiment. Plant cover was estimated at the species level, and aboveground biomass was quantified at the functional group level. Among sites, we observed a negative correlation between the snow removal effect on minimum soil temperature and plant biomass production the next growing season. Three sites exhibited significant rain-out shelter effects on plant productivity, but there was no correlation among sites between the rain-out shelter effect on minimum soil moisture and plant biomass. There was no interaction between snow removal and rain-out shelters for plant biomass, although these two factors only exhibited significant effects simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it decreases minimum soil temperatures, can be an important component of the total effect of reduced precipitation on plant productivity.  相似文献   
7.
The auxin-binding protein 1 (ABP1) has already been proved to be an extracellular receptor of auxin in single cell systems. Protoplasts of maize coleoptiles respond to auxin with an increase in volume. The 2-naphthaleneacetic acid (2-NAA), an inactive auxin analog, acts as an anti-auxin in protoplast swelling, as it suppresses the effect of indole-3-acetic acid (IAA). Antibodies raised against box a of ABP1 induce protoplast swelling in the absence of auxin. This response is inhibited by pre-incubation with 2-NAA. The effect of 2-NAA on swelling induced by agonistic antibodies appears to depend on the binding characteristics of the antibody. ScFv12, an antibody directed against box a, box c and the C-terminal domain of ABP1 also exhibits auxin-agonist activity which is, however, not abolished by 2-NAA. Neither does 2-NAA affect the activity of the C-terminal peptide of ABP1, which is predicted to interact with putative binding proteins of ABP1. These results support the view that box a and box c of ABP1 are auxin-binding domains.  相似文献   
8.
Phytosulfokine (PSK) is a peptide growth factor that requires tyrosine sulfation carried out by tyrosylprotein sulfotransferase (TPST) for its activity. PSK is processed from precursor proteins encoded by five genes in Arabidopsis thaliana and perceived by receptor kinases encoded by two genes in Arabidopsis. pskr1‐3 pskr2‐1 and tpst‐1 knockout mutants displayed reduced seed production, indicative of a requirement for PSK peptide signaling in sexual plant reproduction. Expression analysis revealed PSK precursor and PSK receptor gene activity in reproductive organs with strong expression of PSK2 in pollen. In support of a role for PSK signaling in pollen, in vitro pollen tube (PT) growth was enhanced by exogenously added PSK while PTs of pskr1‐3 pskr2‐1 and of tpst‐1 were shorter. In planta, growth of wild‐type pollen in pskr1‐3 pskr2‐1 and tpst‐1 flowers appeared slower than growth in wild‐type flowers. But PTs did eventually reach the base of the style, suggesting that PT elongation rate may not be responsible for the reduced fertility. Detailed analysis of anthers, style and ovules did not reveal obvious developmental defects. By contrast, a high percentage of unfertilized ovules in pskr1‐3 pskr2‐1 and in tpst‐1 siliques displayed loss of funicular PT guidance, suggesting that PSK signaling is required to guide the PT from the transmitting tract to the embryo sac. Cross‐pollination experiments with wild‐type, pskr1‐3 pskr2‐1 and tpst‐1 male and female parents revealed that both the PT and the female sporophytic tissue and/or female gametophyte contribute to successful PT guidance via PSK signaling and to fertilization success.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号