首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  36篇
  2024年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1992年   1篇
  1988年   2篇
  1980年   2篇
  1968年   1篇
  1958年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
2.
Activation of brown adipose tissue (BAT) and beige fat by cold increases energy expenditure. Although their activation is known to be differentially regulated in part by hypothalamus, the underlying neural pathways and populations remain poorly characterized. Here, we show that activation of rat‐insulin‐promoter‐Cre (RIP‐Cre) neurons in ventromedial hypothalamus (VMH) preferentially promotes recruitment of beige fat via a selective control of sympathetic nervous system (SNS) outflow to subcutaneous white adipose tissue (sWAT), but has no effect on BAT. Genetic ablation of APPL2 in RIP‐Cre neurons diminishes beiging in sWAT without affecting BAT, leading to cold intolerance and obesity in mice. Such defects are reversed by activation of RIP‐Cre neurons, inactivation of VMH AMPK, or treatment with a β3‐adrenergic receptor agonist. Hypothalamic APPL2 enhances neuronal activation in VMH RIP‐Cre neurons and raphe pallidus, thereby eliciting SNS outflow to sWAT and subsequent beiging. These data suggest that beige fat can be selectively activated by VMH RIP‐Cre neurons, in which the APPL2–AMPK signaling axis is crucial for this defending mechanism to cold and obesity.  相似文献   
3.
Restoration managers inoculate microorganisms to enhance soil function and improve restoration success, but the efficacy of these inoculations in real-world conditions is still unclear. We conducted a field experiment to test whether applying extruded seed pellets inoculated with native microbes affected soil properties related to ecosystem function in severely degraded mine soil. We found that inoculating with bacteria did not affect soil carbon, metabolic quotient (a measure of microbial stress), or basal respiration, but increased soil nitrogen by 75%, substrate-induced respiration by 147% and reduced carbon-to-nitrogen ratio by 44% compared to the control. This suggests that the bacteria inoculant contained free-living N fixers that increased the soil N content. Thus, inoculating with bacteria could supplement nitrogen fertilizers in degraded soils during soil restoration. However, we found that inoculating with a mix of bacteria and cyanobacteria did not affect any of the soil properties. This finding is counter to results in laboratory studies, suggesting that field tests are critical for understanding real-world outcomes of microbial inoculation. Finally, we found that soil microbial composition was changed by the inoculation with a mix of bacteria and cyanobacteria. None of the treatments significantly changed the diversity of soil microbial communities. Our data suggest that microbial inoculation could improve some aspects of ecosystem function and thus provide beneficial effects that might facilitate restoration of degraded sites.  相似文献   
4.
The food habits of the silver pomfret, Pampus argenteus (Euphrasen 1788), in Kuwait waters were investigated by examining the stomach contents of 738 specimens collected from May 1996 to April 1997. Their diet consisted of a broad spectrum of food types, but Crustacea were dominant, with copepods and their eggs constituting 39 % other non-copepod Crustacea constituted 16 %. The next major food group was Bacillariophyta (21 %), followed by Mollusca (11 %), fish scales (10 %) and, finally, fish eggs and larvae (3 %). In summer the species fed on a wider variety of food items than in winter. Copepods, other non-copepod crustaceans, and molluscs tended to occur in the stomachs in higher frequencies with an increase in P. argenteus size (up to 18.5–20.4 cm), while the bacillariophytes tended to increase in stomachs at fish sizes between 22.5–24.5 cm. Analysis of monthly variations in stomach fullness indicated that feeding intensity fluctuated throughout the year, with a low during August and September, corresponding to the spawning period.  相似文献   
5.
6.
Emerging evidence has indicated a regulatory role of cyclin-dependent kinase 5 (Cdk5) in synaptic plasticity as well as in higher brain functions, such as learning and memory. However, the molecular and cellular mechanisms underlying the actions of Cdk5 at synapses remain unclear. Recent findings demonstrate that Cdk5 regulates dendritic spine morphogenesis through modulating actin dynamics. Ephexin1 and WAVE-1, two important regulators of the actin cytoskeleton, have both been recently identified as substrates for Cdk5. Importantly, phosphorylation of these proteins by Cdk5 leads to dendritic spine loss, revealing a potential mechanism by which Cdk5 regulates synapse remodeling. Furthermore, Cdk5-dependent phosphorylation of ephexin1 is required for the ephrin-A1 mediated spine retraction, pointing to a critical role of Cdk5 in conveying signals from extracellular cues to actin cytoskeleton at synapses. Taken together, understanding the precise regulation of Cdk5 and its downstream targets at synapses would provide important insights into the multi-regulatory roles of Cdk5 in actin remodeling during dendritic spine development.Excitatory synaptic transmission occurs primarily at dendritic spines, small protrusions that extend from dendritic shafts. Emerging studies have shown that dendritic spines are dynamic structures which undergo changes in size, shape and number during development, and remain plastic in adult brain.1 Regulation of spine morphology has been implicated to associate with changes of synaptic strength.2 For example, enlargement and shrinkage of spines was reported to associate with certain forms of synaptic plasticity, i.e., long-term potentiation and long time depression, respectively.3 Thus, understanding the molecular mechanisms underlying the regulation of spine morphogenesis would provide insights into synapse development and plasticity. Receptor tyrosine kinases (RTKs) such as the Ephs are known to play critical roles in regulating spine morphogenesis. Eph receptors are comprised of 14 members, which are classified into EphAs and EphBs according to their sequence homology and ligand binding specificity. With a few exceptions, EphAs typically bind to A-type ligands, whereas EphBs bind to B-type ligands. During development of the central nervous system (CNS), ephrin-Eph interactions exert repulsive/attractive signaling, leading to regulation of axon guidance, topographic mapping and neural patterning.4 Activated Ephs trigger intracellular signaling cascades, which subsequently lead to remodeling of actin cytoskeleton through tyrosine phosphorylation of its target proteins or interaction with various cytoplasmic signaling proteins. Intriguingly, emerging studies have revealed novel functions of Ephs in synapse formation and synaptic plasticity.5 Specific Ephs expressed in dendritic spines of adult brain are implicated in regulating spine morphogenesis, i.e., EphBs promote spine formation and maturation, while EphA4 induces spine retraction.6,7In the adult hippocampus, EphA4 is localized to the dendritic spines.7,8 Activation of EphA4 at the astrocyte-neuron contacts, triggered by astrocytic ephrin-A3, leads to spine retraction and results in a reduction of spine density.7 It has been well established that actin cytoskeletal rearrangement is critical for spine morphogenesis, and is controlled by a tight regulation of Rho GTPases including Rac1/Cdc42 and RhoA. Antagonistic regulation of Rac1/Cdc42 and RhoA has been observed to precede changes in spine morphogenesis, i.e., activation of Rac1/Cdc42 and inhibition of RhoA is involved in spine formation, and vice versa in spine retraction.9 Rho GTPases function as molecular switches that cycle between an inactive GDP-bound state and an active GTP-bound state. The activation status of GTPase is regulated by an antagonistic action of guanine-nucleotide exchange factors (GEFs) which enhance the exchange of bound GDP for GTP, and GTPase-activating proteins (GAPs) which increase the intrinsic rate of hydrolysis of bound GTP.10 Previous studies have implicated that Rho GTPases provides a direct link between Eph and actin cytoskeleton in diverse cellular processes including spine morphogenesis.11 In particular, EphBs regulate spine morphology by modulating the activity of Rho GTPases, thereby leading to rearrangement of actin networks.1214 Although EphA4 activation results in spine shrinkage, the molecular mechanisms that underlie the action of EphA4 at dendritic spines remain largely unclear.Work from our laboratory recently demonstrated a critical role of cyclin-dependent kinase 5 (Cdk5) in mediating the action of EphA4 in spine morphogenesis through regulation of RhoA GTPase.15 Cdk5 is a proline-directed serine/threonine kinase initially identified to be a key regulator of neuronal differentiation, and has been implicated in actin dynamics through regulating the activity of Pak1, a Rac effector, during growth cone collapse and neurite outgrowth.16 We found that EphA4 stimulation by ephrin-A ligand enhances Cdk5 activity through phosphorylation of Cdk5 at Tyr15. More importantly, we demonstrated that ephexin1, a Rho GEF, is phosphorylated by Cdk5 in vivo. Ephexin1 was reported to transduce signals from activated EphA4 to RhoA, resulting in growth cone collapse during axon guidance.17,18 Interestingly, we found that ephexin1 is highly expressed at the post-synaptic densities (PSDs) of adult brains.15 Loss of ephexin1 in cultured hippocampal neurons or in vivo perturbs the ability of ephrin-A to induce EphA4-dependent spine retraction. The loss of ephexin1 function in spine morphology can be rescued by reexpression of wild-type ephexin1, but not by expression of its phosphorylation-deficient mutant. Our findings therefore provide important evidence that phosphorylation of ephexin1 by Cdk5 is required for the EphA4-dependent spine retraction.Molecular mechanisms underlying the action of Cdk5/ephexin1 on actin networks in EphA4-mediated spine retraction is just beginning to be unraveled. It was reported that activation of EphA4-signaling induces tyrosine phosphorylation of ephexin1 through Src family kinases (SFKs), and promotes its exchange activity towards RhoA.17 Interestingly, mutation of the Cdk5 phosphorylation sites of ephexin1 attenuates the Src-dependent tyrosine phosphorylation of ephexin1 at Tyr87 upon EphA4 activation. These findings suggest that Cdk5 is the “priming” kinase for ephexin1. We propose that EphA4 activation by ephrin-A ligand increases Cdk5 activity, leading to phosphorylation and priming of ephexin1 for the subsequent phosphorylation of ephexin1 by Src kinase at Tyr87, resulting in an increase of its exchange activity towards RhoA. Thus, regulation of Cdk5 activity might indirectly control the phosphorylation of ephexin1 by Src. It is tempting to speculate that phosphorylation of ephexin1 by Cdk5 at the amino-terminal region leads to a conformational change of protein, thus facilitating the access of Tyr87 site on ephexin1 to Src kinase. Whereas accumulating evidence have pointed to a pivotal role of various GEFs including Tiam1, intersectin and kalirin in regulating spine morphogenesis, the involvement of GAPs is not clear. For example, oligophrenin-1, a Rho GAP, is implicated in maintaining the spine length through repressing RhoA activity.19 Thus, it is conceivable that a specific GAP is involved in EphA4-dependent spine retraction. Recently, we found that α2-chimaerin, a Rac GAP, regulates EphA4-dependent signaling in hippocampal neurons (Shi and Ip, unpublished observations). Taken into consideration that α2-chimaerin is enriched in the PSDs, α2-chimaerin is a likely candidate that cooperates with ephexin1 during EphA4-dependent spine retraction.In addition to stimulation of the RTK signaling cascade following EphA4 receptor activation, clustering of EphA4 signaling complex is required for eliciting maximal EphA4 function.20 It is tempting to speculate that Cdk5 also regulates the formation of EphA4-containing clusters in neurons. Indeed, Cdk5-/- neurons show reduced size of EphA4 clusters upon ephrin-A treatment, suggesting that Cdk5 regulates the recruitment of downstream signaling proteins to activate EphA4. Moreover, since ephrinA-EphA4 interaction stimulates the activity of Cdk5 at synaptic contacts, it is possible that Cdk5 might play additional roles at the post-synaptic regions through phosphorylation of its substrates. For example, PSD-95, the major scaffold protein in the PSDs, and NMDA receptor subunit NR2A are both substrates for Cdk5. Interestingly, phosphorylation of these proteins by Cdk5 has been implicated in regulating the clustering of neurotransmitter receptors as well as synaptic transmission.21,22 Consistent with these observations, spatial distribution of neurotransmitter receptors at neuromuscular synapses is altered and abnormal neurotransmission is observed in Cdk5-/- mice.23 Thus, further analysis to delineate the precise roles of Cdk5 in EphA4-dependent synapse development, including regulation of neurotransmitter receptor clustering, is required.Recently, Cdk5 was shown to regulate dendritic spine density and shape through controlling the phosphorylation status of Wiskott-Aldrich syndrome protein-family verprolin homologous protein 1 (WAVE-1), a critical component of actin cytoskeletal network.24 In particular, phosphorylation of WAVE-1 by Cdk5 prevents actin from Arp2/3 complex-dependent polymerization and leads to a loss of dendritic spines at basal state, while reduced Cdk5-dependent phosphorylation of WAVE-1 through cAMP-dependent dephosphorylation leads to an enhanced actin polymerization and increased number of spines. It is interesting to note that phosphorylation of ephexin1 and WAVE-1 by Cdk5 both results in a reduction of spine density. Whether a concerted phosphorylation of these proteins at synapses by Cdk5 plays a role in synaptic plasticity awaits further studies. Precise regulation of Cdk5 activity is unequivocally important to maintain its proper functions at synaptic contacts. Activation of Cdk5 is mainly dependent on its binding to two neuronal-specific activators, p35 or p39, and its activity can be enhanced upon phosphorylation at Tyr15.While the signals that lie upstream of Cdk5 have barely begun to be unraveled, Cdk5 has been demonstrated to be a key downstream regulator of signaling pathways activated by extracellular cues such as neuregulin, BDNF and semaphorin. To the best of our knowledge, ephrin-EphA4 signaling is the first extracellular cue that has been identified to phosphorylate Cdk5 and promote its activity at CNS synapses.15,25 Since BDNF-TrkB and semaphorin3A-fyn signaling have also been implicated in synapse/ spine development, it is of importance to examine whether Cdk5 is the downstream integrator of these signaling events at synapses during spine morphogenesis.26,27Although accumulating evidence highlights a role of Cdk5 in spatial learning and synaptic plasticity, the molecular mechanisms underlying the action of Cdk5 are largely unclear.28,29 With the recent findings that reveal the critical involvement of Cdk5 in the regulation of Rho GTPases to affect spine morphology, it can be anticipated that precise regulation of actin dynamics by Cdk5 at synapses will be an important mechanism underlying synaptic plasticity in the adult brain.? Open in a separate windowFigure 1Phosphorylation of actin regulators by Cdk5 during dendritic spine morphogenesis. (A) In striatal and hippocampal neurons, phosphorylation of WAVE-1 by Cdk5 at basal condition prevents WAVE-1-mediated actin polymerization and leads to a loss of dendritic spines. However, activation of cyclic AMP-dependent signaling by neurotransmitter such as dopamine, reduces the Cdk5-dependent phosphorylation of WAVE-1 in these neurons. Dephosphorylation of WAVE-1 promotes actin polymerization and results in an increased number of mature dendritic spines. (B) In mature hippocampal neurons, activation of EphA4 by ephrin-A increases Cdk5-dependent of ephexin1. The phosphorylation of ephexin1 by Cdk5 facilitates its EphA4-stimulated GEF activity towards RhoA activation and leads to spine retraction.  相似文献   
7.
Sixty-four experts from a variety of disciplines attended a Conference on the Eradicability of Onchocerciasis at The Carter Center, in Atlanta GA, held January 22-24, 2002. The Conference, which was organized by The Carter Center and the World Health Organization, with funding from the Bill & Melinda Gates Foundation, addressed the question: "Is onchocerciasis (River Blindness) eradicable with current knowledge and tools?" Former US President Jimmy Carter attended part of the final plenary proceedings on January 24.The Conference consisted of a series of presentations by invited expert speakers (Appendix C) and further deliberations in four workgroups (Appendix D) followed by plenary discussion of major conclusions. The presentations underlined epidemiological and entomological differences between onchocerciasis in Africa and the Americas. Whilst onchocerciasis in Africa covers extensive areas and is associated with striking human and fly population migrations and remarkably efficient black fly vectors, in the Americas onchocerciasis is found in limited foci. Human and fly population migration are not major problems in the Americas, where most black fly species are inefficient, though some efficient black flies are also found there. Vector control has been effectively applied in the Onchocerciasis Control Program in West Africa (OCP) with remarkable results, interrupting transmission in most parts of the original Program area. The use of ivermectin has given variable results: while ivermectin treatment has been effective in all endemic areas in controlling onchocerciasis as a public health problem, its potential for interrupting transmission is more promising in hypo- and mesoendemic areas. The African Program for Onchocerciasis Control (APOC), which supports onchocerciasis control in endemic African countries outside the OCP, applies ivermectin, its principal control tool, to communities in high-risk areas as determined by rapid epidemiological mapping of onchocerciasis (REMO) and Geographic Information Systems (GIS). In the Americas, through support of the Onchocerciasis Elimination Program in the Americas (OEPA), a strategy of bi-annual ivermectin treatment of at least 85% of the eligible populations in all endemic communities is showing very good results and promises to be effective in eliminating onchocerciasis in the region.The Conference concluded that onchocerciasis is not eradicable using current tools due to the major barriers to eradication in Africa. However, the Conference also concluded that in most if not all the Americas, and possibly Yemen and some sites in Africa, transmission of onchocerciasis can be eliminated using current tools. The Conference recommended that where interruption of transmission is feasible and cost effective, programs should aim for that goal using all appropriate and available interventions so that the Onchocerca volvulus can eventually be eliminated and interventions halted. Although interruption of transmission of onchocerciasis cannot currently be achieved in most of Africa, the Conference recommended that efforts be made to preserve areas in West Africa made free of onchocerciasis transmission through the Onchocerciasis Control Program over the past 25 years. In the remaining hyper and mesoendemic foci in Africa, continued annual distribution of ivermectin will keep onchocerciasis controlled to a point where it is no longer a public health problem or constraint to economic development.  相似文献   
8.
In 'runted' populations of Tilapia zilli positive correlations were found between maturation stages and the following: gonadosomatic index, gonad weight, fish weight and fish length. The minimum size at maturity was 9·0 cm in males and 11·0 cm in females. The mean fecundity in the 'stunted' females was 2359 eggs and it increased with length ( L ) weight (HO and depth ( D ) of the fish. There was, however, no correlation between fecundity and egg size. The results indicated that growth in this 'stunted' T. zilli population was not isometric. The relative condition factor ( Kn ) which approached one indicates good condition.  相似文献   
9.
Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d’Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.  相似文献   
10.
Anopheles stephensi Liston s.l. (Diptera: Culicidae) is one of the major vectors of malaria in Pakistan, India, Iran and Afghanistan. In parts of its range this species has shown increases in both relative and absolute abundance in what is hypothesized to be a response to human-mediated environmental change resulting from extensive irrigation. We attempted to detect the molecular genetic signatures of this population instability based on three samples obtained from two villages (149/6R and 111/6R) within an irrigation zone in Punjab Province and from one village (Azakhel) outside the irrigation scheme in Northwest Frontier Province (NWFP), Pakistan, using seven microsatellite loci and 682 basepairs of the mitochondrial CO1 gene. For microsatellite loci, high levels of genetic diversity were observed within populations (mean alleles per locus 10.71-11.57; mean heterozygosity 0.703-0.733). Deviation from Hardy-Weinberg expectations was observed for only two microsatellite loci in 21 tests. No genetic differentiation was observed between populations and average pairwise F(ST) values did not differ significantly from zero for any population pair or either marker system. Tests of population expansion for both mitochondrial and microsatellite loci were inconclusive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号