首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   15篇
  2021年   2篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1990年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1978年   2篇
  1972年   1篇
排序方式: 共有80条查询结果,搜索用时 17 毫秒
1.
Persistent infection by hepatitis B virus (HBV) is epidemiologically correlated with the prevalence of hepatocellular carcinoma, but its role in tumor development is not yet understood. To study the putative oncogenic potential of HBV, a non-malignant immortal mouse hepatocyte line FMH202 harboring metallothionein promoter-driven simian virus 40 large tumor antigen was transfected with HBV DNA. All stably transfected clones which replicated HBV displayed malignant growth characteristics in soft agar and were tumorigenic upon inoculation in nude mice. The nude mice tumors were histologically classified as differentiated or anaplastic hepatocellular carcinomas. As with human liver carcinomas, rearrangements of in vitro integrated HBV sequences were observed in the nude mouse tumors, and in tumor-derived cell lines. In one case, expression of viral core and surface antigens was blocked in the tumors, correlating with hypermethylation of the HBV genome. However, the expression of X gene was maintained in most tumors and tumor-derived cell lines. X protein was detected in nuclei by immune fluorescence and by immune blot. These results provide the first demonstration that HBV displays oncogenic potential in an experimental system. This system could be useful to functionally identify HBV genes which convey a tumorigenic phenotype.  相似文献   
2.
X Lu  T M Block    W H Gerlich 《Journal of virology》1996,70(4):2277-2285
The human hepatoblastoma cell line HepG2 produces and secretes hepatitis B virus (HBV) after transfection of cloned HBV DNA. Intact virions do not infect these cells, although they attach to the surface of the HepG2 cell through binding sites in the pre-S1 domain. Entry of enveloped virions into the cell often requires proteolytic cleavage of a viral surface protein that is involved in fusion between the cell membrane and the viral envelope. Recently, we observed pre-S-independent, nonspecific binding between hepatitis B surface (HBs) particles and HepG2 cells after treatment of HBs antigen particles with V8 protease, which cleaves next to a putative fusion sequence. Chymotrypsin removed this fusion sequence and did not induce binding. In this study, we postulate that lack of a suitable fusion-activating protease was the reason why the HepG2 cells were not susceptible to HBV. To test this hypothesis, virions were partially purified from the plasma of HBV carriers and treated with either staphylococcal V8 or porcine chymotrypsin protease. Protease-digested virus lost reactivity with pre-S2-specific antibody but remained morphologically intact as determined by electron microscopy. After separation from the proteases, virions were incubated with HepG2 cells at pH 5.5. Cultures inoculated with either intact or chymotrypsin-digested virus did not contain detectable levels of intracellular HBV DNA at any time following infection. However, in cultures inoculated with V8-digested virions, HBV-specific products, including covalently closed circular DNA, viral RNA, and viral pre-S2 antigen, could be detected in a time-dependent manner following infection. Immunofluorescence analysis revealed that 10 to 30% of the infected HepG2 cells produced HBV antigen. Persistent secretion of virus by the infected HepG2 cells lasted at least 14 days and was maintained during several reseeding steps. The results show that V8-digested HBV can productively infect tissue cultures of HepG2 cells. It is suggested that proteolysis-dependent exposure of a fusion domain within the envelope protein of HBV is necessary during natural infection.  相似文献   
3.
4.
Hepatitis B virus DNA contains a tightly bound protein which was not removed by heating to 60°C with 2% SDS, 2% mercaptoethanol. The protein was indirectly demonstrated by the extraction of the DNA-protein complex with phenol before but not after its digestion with proteinase K. The DNA-protein complex had a lower buoyant density than protease-treated or free DNA; it was bound to glass fiber filters; it migrated at a slower rate in gel electrophoresis; and it could be radiolabeled by oxidative iodination. The binding site of the protein was mapped by extraction of restriction endonuclease digests with phenol and analysis of the digests for missing DNA fragments. The protein was localized to a site near the 5′ end of the complete viral DNA strand. It remained attached to this strand after heating with SDS to 90°C or treatment with 0.1 N NaOH, suggesting a covalent linkage. The 5′ end of neither viral DNA strand could be phosphorylated in a reaction with polynucleotide kinase, consistent with attachment of protein to the 5′ ends. The incomplete DNA strand, however, which is the strand elongated by the virion DNA polymerase reaction, did not contain a detectable amount of polypeptide as did the complete strand. The reasons for the apparent block of the 5′ end of the incomplete DNA strand is thus not known. The protein bound covalently to HBV DNA could be involved in the replication of the complete viral DNA strand and/or endonucleolytic generation of linear unit-length DNA pieces from replicative intermediates, although its function and origin are not yet known.  相似文献   
5.
6.
The surface antigen of hepatitis B virus comprises a nested set of small (S), middle (M), and large (L) proteins, all of which are partially glycosylated in their S domains. The pre-S2 domain, present only in M and L proteins, is further N-glycosylated at Asn-4 exclusively in the M protein. Since the pre-S2 N-glycan appears to play a crucial role in the secretion of viral particles, the M protein may be considered as a potential target for antiviral therapy. For characterization of the pre-S2 glycosylation, pre-S2 (glyco)peptides were released from native, patient-derived hepatitis B virus subviral particles by tryptic digestion, separated from remaining particles, purified by reversed-phase high performance liquid chromatography, and identified by amino acid and N-terminal sequence analysis as well as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Pre-S2 N-glycans were characterized by anion exchange chromatography, methylation analysis, and on target sequential exoglycosidase digestions in combination with MALDI-TOF-MS, demonstrating the presence of partially sialylated diantennary complex-type oligosaccharides. In addition, the pre-S2 domain of M protein, but not that of L protein, was found to be partially O-glycosylated by a Gal(beta1-3)GalNAcalpha-, Neu5Ac(alpha2-3)Gal(beta1-3)GalNAcalpha-, or GalNAcalpha-residue. The respective O-glycosylation site was assigned to Thr-37 by digestion with carboxypeptidases in combination with MALDI-TOF-MS and by quadrupole time-of-flight electrospray mass spectrometry. Analytical data further revealed that about 90% of M protein is N-terminally acetylated.  相似文献   
7.
Sister chromatid separation in anaphase depends on the removal of cohesin complexes from chromosomes. In vertebrates, the bulk of cohesin is already removed from chromosome arms during prophase and prometaphase, whereas cohesin remains at centromeres until metaphase, when cohesin is cleaved by the protease separase. In unperturbed mitoses, arm cohesion nevertheless persists throughout metaphase and is principally sufficient to maintain sister chromatid cohesion. How arm cohesion is maintained until metaphase is unknown. Here we show that small amounts of cohesin can be detected in the interchromatid region of metaphase chromosome arms. If prometaphase is prolonged by treatment of cells with microtubule poisons, these cohesin complexes dissociate from chromosome arms, and arm cohesion is dissolved. If cohesin dissociation in prometaphase-arrested cells is prevented by depletion of Plk1 or inhibition of Aurora B, arm cohesion is maintained. These observations imply that, in unperturbed mitoses, small amounts of cohesin maintain arm cohesion until metaphase. When cells lacking Plk1 and Aurora B activity enter anaphase, chromatids lose cohesin. This loss is prevented by proteasome inhibitors, implying that it depends on separase activation. Separase may therefore be able to cleave cohesin at centromeres and on chromosome arms.  相似文献   
8.
9.
Current status of antisense DNA methods in behavioral studies   总被引:4,自引:0,他引:4  
Ogawa  S; Pfaff  DW 《Chemical senses》1998,23(2):249-255
The antisense DNA method has been used successfully to block the expression of specific genes in vivo in neuronal systems. An increasing number of studies in the last few years have shown that antisense DNA administered directly into the brain can modify various kinds of behaviors. These findings strongly suggest that the antisense DNA method can be used as a powerful tool to study causal relationships between molecular processes in the brain and behavior. In this article we review the current status of the antisense method in behavioral studies and discuss its potentials and problems by focusing on the following four aspects; (i) optimal application paradigms of antisense DNA methods in behavioral studies; (ii) efficiencies of different administration methods of antisense DNA used in behavioral studies; (iii) determination of specificity of behavioral effects of antisense DNA; and (iv) discrepancies between antisense DNA effects on behaviors and those on protein levels of the targeted gene.   相似文献   
10.

Background

A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317) suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env) are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans.

Results

Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression.

Conclusions

Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号