首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  1999年   1篇
  1973年   1篇
  1951年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Numerous studies have dealt with the relationship between leafnitrogen content and leaf irradiance. However, most of themrefer to dense stands presenting reduced horizontal heterogeneityof foliage distribution. Both gradients of leaf nitrogen andleaf irradiance related to canopy depth are significant undersuch conditions, and modelling radiative exchange using a turbid-mediumanalogy and dividing the canopy into vegetation layers is sufficient.Conversely, row crops such as maize are characterized by stronghorizontal heterogeneity of foliage distribution and the one-dimensional(1D) approach may be unsuitable. We thus modelled the three-dimensional(3D) geometry of maize canopies with varying densities and atdifferent developmental stages using plant digitizing underfield conditions. The nitrogen content per unit area of eachleaf part was obtained subsequently by nitrogen analysis. Wenext calculated radiative exchange using a 3D volume-based approachwithin the canopies in order to estimate local leaf irradianceon a daily integration scale. Vertical gradients in leaf nitrogencontent per unit area observed in dense stands during the vegetativephase corresponded largely to those reported in the literature.We also identified significant gradients in nitrogen contentalong the leaves, which had not before been clearly demonstrated.Our study shows that local light climate during plant developmentplays a major role in leaf nitrogen distribution and remobilization.Moreover, brutal plant thinning involves rapid changes in leafnitrogen partitioning. It is concluded that taking account ofthe 3D heterogeneity of nitrogen and irradiance distributionmay have implications for modelling crop photosynthesis andproduction. Copyright 1999 Annals of Botany Company 3D plant architecture, horizontal gradients in leaf nitrogen, leaf irradiance, leaf nitrogen content per unit area, maize, nitrogen partitioning, nitrogen remobilization, virtual plant, Zea mays L.  相似文献   
2.
Evolution of different enzymes (glucose 6-phosphate dehydrogenase EC 1.1.1.49, fructose 1–6 diphosphate aldolase EC 4.1.2.1.3, malic enzyme EC 1.1.1.40, pyruvic decarboxylase EC 4.1.1.1) was followed by polyacrylamide gel electrophoresis and specific staining during the maturation of the pear (cv. Passe-Crassane) harvested and stored at +15°C. During the increase of the respiration rate, the glucose 6 P dehydrogenase activity declines while the three other enzymes activity increases. Results obtained are discussed.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号