首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   8篇
  74篇
  2021年   1篇
  2019年   2篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
Fifteen restriction sites were mapped to the 28S ribosomal RNA gene of individuals representing 54 species of frogs, two species of salamanders, a caecilian, and a lungfish. Eight of these sites were present in all species examined, and two were found in all but one species. Alignment of these conserved restriction sites revealed, among anuran 28S rRNA genes, five regions of major length variation that correspond to four of 12 previously identified divergent domains of this gene. One of the divergent domains (DD8) consists of two regions of length variation separated by a short segment that is conserved at least throughout tetrapods. Most of the insertions, deletions, and restriction-site variations identified in the 28S gene will require sequence-level analysis for a detailed reconstruction of their history. However, an insertion in DD9 that is coextensive with frogs in the suborder Neobatrachia, a BstEII site that is limited to representatives of two leptodactylid subfamilies, and a deletion in DD10 that is found only in three ranoid genera are probably synapomorphies.   相似文献   
2.
The ITS sequences of Acropora spp. are the shortest so far identified in any metazoan and are among the shortest seen in eukaryotes; ITS1 was 70-80 bases, and ITS2 was 100-112 bases. The ITS sequences were also highly variable, but base composition and secondary structure prediction indicate that divergent sequence variants are unlikely to be pseudogenes. The pattern of variation was unusual in several other respects: (1) two distinct ITS2 types were detected in both A. hyacinthus and A. cytherea, species known to hybridize in vitro with high success rates, and a putative intermediate ITS2 form was also detected in A. cytherea; (2) A. valida was found to contain highly (29%) diverged ITS1 variants; and (3) A. longicyathus contained two distinct 5.8S rDNA types. These data are consistent with a reticulate evolutionary history for the genus Acropora.   相似文献   
3.
Q Niu  W Wang  Y Li  DM Ruden  F Wang  Y Li  F Wang  J Song  K Zheng 《PloS one》2012,7(7):e41035
Cancer side population (SP) cells, which are often referred to as cancer stem cells, are thought to be responsible for lung cancer chemotherapy resistance, and currently no drug can specifically target these cells. We hypothesize low-molecular-weight heparin (LMWH) may affect the biological properties of SP cells and could be used to clinically target these cells. To test this, SP cells were isolated from cisplatin (DDP)-resistant lung adenocarcinoma A549/DDP cells by flow cytometric sorting. Compared to non-SP cells, SP cells formed increased numbers of colonies in vitro, and had a 1000-fold increase in tumorigenicity in vivo. Proliferation and apoptosis assays demonstrated LMWH had no significant effect on lung SP cell proliferation or apoptosis. However, LMWH reduced lung SP cell colony formation ability and protein expression of the multidrug transporter, ABCG2, by FACS and western blot analyses without affecting its mRNA levels by RT-PCR. Consistently, immunohistochemistry stainings of ABCG2 in LMWH-treated tumor tissues were significantly reduced compared with those in controls. Further, we found proteasomal inhibitor MG132, but not lysosomal inhibitors leupeptin and pepstatin A, could restore ABCG2 protein levels in LMWH-treated SP cells. These suggest LMWH ablates lung SP cell chemoresistance by proteasome-mediated reduction of ABCG2 protein levels without affecting its mRNA levels. We also determined LMWH combined with cisplatin could overcome cisplatin-resistance and induced lung SP cells apoptosis both in vitro and in vivo. This study provides an experimental basis for using a combination of LMWH, which targets lung SP cells, with chemotherapy to improve lung cancer survival.  相似文献   
4.
Gao Z  Ruden DM  Lu X 《Current biology : CB》2003,13(24):2175-2178
Sperm of both mammals and invertebrates move toward specific sites in the female reproductive tract. However, molecular mechanisms for sperm to follow directional cues are unknown. Here, we report genetic analysis of Drosophila Pkd2 at 33E3 (Pkd2, CG6504), which encodes a Ca(2+)-activated, nonselective cation channel homologous to the human Pkd2 autosomal dominant polycystic kidney disease (ADPKD) gene. The PKD2 family of genes has been implicated in sensory responses through protein localization on primary cilia of epithelia and neurons. In renal tubules, cilium-associated PKD2 appears to mediate Ca(2+) influx in response to fluid flow, and the loss of fluid sensation probably contributes to cyst growth and ADPKD. Sperm tails or flagella are specialized cilia essential for movement. Drosophila Pkd2 is abundantly associated with the tail and the acrosome-containing head region of mature sperm. Targeted disruption of Pkd2 results in male sterility without affecting spermatogenesis. The mutant sperm are motile but fail to swim into the storage organs in the female. Rare mutant sperm that reach the storage organs are able to fertilize the egg and produce viable progeny. Our data demonstrate that the Drosophila PKD2 cation channel operates in sperm for directional movement inside the female reproductive tract.  相似文献   
5.
Conrad Waddington published an influential model for evolution in his 1942 paper, Canalization of Development and Inheritance of Acquired Characters. In this classic, albeit controversial, paper, he proposed that an unknown mechanism exists that conceals phenotypic variation until the organism is stressed. Recent studies have proposed that the highly conserved chaperone Hsp90 could function as a "capacitor," or an "adaptively inducible canalizer," that masks silent phenotypic variation of either genetic or epigenetic origin. This review will discuss evidence for, and arguments against, the role of Hsp90 as a capacitor for morphological evolution, and as a key component of what we call "Waddington's widget."  相似文献   
6.
The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.  相似文献   
7.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
8.
The protective antigen (PA) is one of the three components of the anthrax toxin. It is a secreted nontoxic protein with a molecular weight of 83 kDa and is the major component of the currently licensed human vaccine for anthrax. Due to limitations found in the existing vaccine formulation, it has been proposed that genetically modified PA may be more effective as a vaccine. The expression and the stability of two recombinant PA (rPA) variants, PA-SNKE-ΔFF-E308D and PA-N657A, were studied. These proteins were expressed in the nonsporogenic avirulent strain BH445. Initial results indicated that PA-SNKE-ΔFF-E308D, which lacks two proteolysis-sensitive sites, is more stable than PA-N657A. Process development was conducted to establish an efficient production and purification process for PA-SNKE-ΔFF-E308D. pH, media composition, growth strategy and protease inhibitors composition were analyzed. The production process chosen was based on batch growth of B. anthracis using tryptone and yeast extract as the only source of carbon, pH control at 7.5, and antifoam 289. Optimal harvest time was 14–18 h after inoculation, and EDTA (5 mM) was added upon harvest for proteolysis control. Recovery of the rPA was performed by expanded-bed adsorption (EBA) on a hydrophobic interaction chromatography (HIC) resin, eliminating the need for centrifugation, microfiltration and diafiltration. The EBA step was followed by ion exchange and gel filtration. rPA yields before and after purification were 130 and 90 mg/l, respectively. The purified rPA, without further treatment, treated with small amounts of formalin or adsorbed on alum, induced, high levels of IgG anti-PA with neutralization activities. Journal of Industrial Microbiology & Biotechnology (2002) 28, 232–238 DOI: 10.1038/sj/jim/7000239 Received 28 August 2001/ Accepted in revised form 20 December 2001  相似文献   
9.
We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.  相似文献   
10.
Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号