首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
  65篇
  2022年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2008年   1篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
The parental environment can alter offspring phenotypes via the transfer of non‐genetic information. Parental effects may be viewed as an extension of (within‐generation) phenotypic plasticity. Smaller size, poorer physical condition, and skewed sex ratios are common responses of organisms to global warming, yet whether parental effects alleviate, exacerbate, or have no impact on these responses has not been widely tested. Further, the relative non‐genetic influence of mothers and fathers and ontogenetic timing of parental exposure to warming on offspring phenotypes is poorly understood. Here, we tested how maternal, paternal, and biparental exposure of a coral reef fish (Acanthochromis polyacanthus) to elevated temperature (+1.5°C) at different ontogenetic stages (development vs reproduction) influences offspring length, weight, condition, and sex. Fish were reared across two generations in present‐day and projected ocean warming in a full factorial design. As expected, offspring of parents exposed to present‐day control temperature that were reared in warmer water were shorter than their siblings reared in control temperature; however, within‐generation plasticity allowed maintenance of weight, resulting in a higher body condition. Parental exposure to warming, irrespective of ontogenetic timing and sex, resulted in decreased weight and condition in all offspring rearing temperatures. By contrast, offspring sex ratios were not strongly influenced by their rearing temperature or that of their parents. Together, our results reveal that phenotypic plasticity may help coral reef fishes maintain performance in a warm ocean within a generation, but could exacerbate the negative effects of warming between generations, regardless of when mothers and fathers are exposed to warming. Alternatively, the multigenerational impact on offspring weight and condition may be a necessary cost to adapt metabolism to increasing temperatures. This research highlights the importance of examining phenotypic plasticity within and between generations across a range of traits to accurately predict how organisms will respond to climate change.  相似文献   
2.
3.
4.
5.
The calcitonin peptides [calcitonin (CT), calcitonin gene-related peptide (CGRP), amylin] share many biological actions, including activity on bone cells. In the present study, CT (10(-11) to 10(-9) M) stimulated [(3)H]thymidine incorporation in primary cultures of human osteoblasts (hOB), as already demonstrated for CGRP and amylin. RT-PCR analysis showed that the calcitonin receptor and the calcitonin receptor-like receptor are both expressed in hOB. In these cells, CT (10(-10) M) and amylin (10(-9) M), in contrast to CGRP (10(-8) M), did not increase cAMP production. All three peptides stimulated protein kinase C (PKC) activity. To evaluate PKC involvement in hOB proliferation, cells were incubated with phorbol 12,13-dibutyrate, a stimulator of PKC activity; cell proliferation was increased in a dose-dependent manner (EC(50) = 3.4 x 10(-8) M). Staurosporine (10(-9) M), a PKC inhibitor, blocked phorbol 12,13-dibutyrate-induced PKC activity and cell proliferation. Inhibition of PKC by staurosporine also counteracted the stimulatory effect of CT, CGRP, and amylin on hOB proliferation. From these data, it is deduced that the activation of PKC is important for hOB proliferation and that it is involved in the anabolic effect of CT peptides on bone.  相似文献   
6.
A new photoactivable, radioactive derivative of ganglioside GM1 has been utilized to assess lipid distribution in the caveolae bilayer, taking advantage of the ability of the glycolipid, endogenous or exogenously added, to concentrate within this membrane compartment and to crosslink neighboring molecules upon illumination. After insertion into A431 plasma membrane and photoactivation, a membrane-enriched and a detergent-resistant fraction, enriched in gangliosides, sphingomyelin and cholesterol, were isolated. While a few radioactive proteins were detected in the membrane-enriched fraction, only radioactive caveolin was detected in the detergent-resistant fraction, indicating at the same time the enrichment of this fraction in caveolae and the presence of ganglioside within this compartment. Among lipids, crosslinked phosphatidylcholine, sphingomyelin and cholesterol were detected in the membrane-enriched fraction, while only crosslinked sphingomyelin was detected in the detergent-resistant fraction. These results suggest the enrichment in sphingomyelin - along with ganglioside - within the outer leaflet, and the preferential localization of cholesterol within the endoplasmic leaflet, of the caveolae bilayer.  相似文献   
7.
8.
Latexin, the only known mammalian carboxypeptidase inhibitor, has no detectable sequence similarity with plant and parasite inhibitors, but it is related to a human putative tumor suppressor protein, TIG1. Latexin is expressed in the developing brain, and we find that it plays a role in inflammation, as it is expressed at high levels and is inducible in macrophages in concert with other protease inhibitors and potential protease targets. The crystal structure of mouse latexin, solved at 1.83 A resolution, shows no structural relationship with other carboxypeptidase inhibitors. Furthermore, despite a lack of detectable sequence duplication, the structure incorporates two topologically analogous domains related by pseudo two-fold symmetry. Surprisingly, these domains share a cystatin fold architecture found in proteins that inhibit cysteine proteases, suggesting an evolutionary and possibly functional relationship. The structure of the tumor suppressor protein TIG1 was modeled, revealing its putative membrane binding surface.  相似文献   
9.
The osteoprotegerin (OPG)/receptor activator of nuclear factor-B ligand (RANKL)/receptor activator of nuclear factor-B (RANK) system was evaluated as a potential target of CGRP anabolic activity on bone. Primary cultures of human osteoblast-like cells (hOB) express calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1, and, because CGRP stimulates cAMP (one of the modulators of OPG production in osteoblasts), it was investigated whether it affects OPG secretion and expression in hOB. CGRP treatment of hOB (10–11 M–10–7 M) dose-dependently inhibited OPG secretion with an EC50 of 1.08 x 10–10 M, and also decreased its expression. This action was blocked by the antagonist CGRP8–37. Forskolin, a stimulator of cAMP production, and dibutyryl cAMP also reduced the production of OPG. CGRP (10–8 M) enhanced protein kinase A (PKA) activity in hOB, and hOB exposure to the PKA inhibitor, H89 (2 x 10–6 M), abolished the inhibitory effect of CGRP on OPG secretion. Conditioned media from CGRP-treated hOB increased the number of multinucleated tartrate-resistant acid phosphatase-positive cells and the secretion of cathepsin K in human peripheral blood mononuclear cells compared with the conditioned media of untreated hOB. These results show that the cAMP/PKA pathway is involved in the CGRP inhibition of OPG mRNA and protein secretion in hOB and that this effect favors osteoclastogenesis. CGRP could thus modulate the balance between osteoblast and osteoclast activity, participating in the fine tuning of all of the bone remodeling phases necessary for the subsequent anabolic effect. receptor-activity-modifying proteins; protein kinase A; osteoclast; cathepsin K  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号