首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2017年   1篇
  2012年   3篇
  2011年   2篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Berber  I.  Cokmus  C.  Atalan  E. 《Microbiology》2003,72(1):42-47
In this study, a total of fifteen staphylococcal strains belonging to different species were characterized by whole-cell and extracellular protein profiles using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). The results are presented as dendrograms after quantitative analysis of the band patterns with a computer program. Visual inspection of protein bands and cluster analysis of protein patterns of to be used 15 strains, representing 10 Staphylococcus species, showed that whole-cell and extracellular protein profiles differed in several protein bands in Staphylococcus aureus, S. epidermidis, S. simulans, and other species of Staphylococcus; however, the differences were insufficient for reliable differentiation of Staphylococcus species by the SDS–PAGE method.  相似文献   
2.
From 42 different hot springs in six provinces belonging to distinct geographical regions of Turkey, 451 thermophilic bacilli were isolated and 67 isolates with a high amylase activity were selected to determine the α-glucosidase production capacities by using pNPG as a substrate. α-Glucosidase production capacities of the isolates varied within the range from 77.18 to 0.001 U/g. Eleven of our thermophilic bacilli produced α-glucosidase at significant levels comparable with that of the reference strains tested; thus, five strains, F84b (77.18 U/g), A333 (48.64 U/g), F84a (36.64 U/g), E134 (32.09 U/g), and A343 (10.79 U/g), were selected for further experiments. 16S rDNA sequence analysis revealed that these selected isolates all belonged to thermophilic bacilli 16S rDNA genetic group 5, four of them representing the genus Geobacillus, while strain A343 had an uncultured bacterium as the closest relative. Changes in α-glucosidase levels in the intracellular and extracellular fractions were determined during 48-h cultivation of A333, A343, F84a, F84b, E134, and the reference strain G. stearothermophilus ATCC 12980. According to α-glucosidase production type and enzyme levels in intracellular and extracellular fractions, Geobacillus spp. A333, F84a, and F84b were defined as extracellular enzyme producers, whereas the thermophilic bacterium A343 was found to be an intracellular α-glucosidase producer, similar to ATCC 12980 strain. Geobacillus sp. E134 differed in α-glucosidase production type from all tested isolates and the reference strain; it was described as a membrane-associated cell-bound enzyme producer. In this study, apart from screening a great number of new thermophilic bacilli from the hot springs of Turkey, which have not yet been thoroughly studied, five new thermostable α-1,4-glucosidase-producing bacilli that have biotechnological potential with α-glucosidases located at different cell positions were obtained. The text was submitted by the authors in English.  相似文献   
3.
Ninety-five extremely halophilic strains were isolated from six distinct saline regions of Turkey by using complex medium containing 25% NaCl. The selected regions are Tuz Golu (salt lake), Ankara; Aci Lake, Denizli; Salda Lake, Denizli; Seyfe Lake, Kirsehir; Tuzla Lake, Kayseri; and Bolluk Lake, Konya. The isolated strains were tested for motility, Gram reaction, cell and colony morphologies, pigmentation, biochemical characteristics, and antibiotic sensitivities. According to membrane glycerol diether moieties and antibiotic susceptibilities, all isolated strains were found to belong to the domain Archaea. All isolates were examined for the presence of plasmids by agarose gel electrophoresis and it was established that most isolates contained plasmids that varied in number and whose molecular sizes ranged from 1 to 36.9 kbp. Whole-cell protein profiles from isolates were analyzed by SDS-PAGE and a similarity dendogram was constructed using the UPGMA method. Significant similarities and differences were observed among the isolates. The strains were clustered in eight groups and ten of our isolates were placed in the same group with the standard strains. The current study represents the first isolation and characterization of such a large collection of archeal strains from Turkey.  相似文献   
4.
Ninety-five extremely halophilic strains were isolated from six distinct saline regions of Turkey by using complex medium containing 25% NaCl. The selected regions are Tuz Golu (salt lake), Ankara; Aci Lake, Denizli; Salda Lake, Denizli; Seyfe Lake, Kyrsherhir; Tuzla Lake, Kayseri; and Bolluk Lake, Konya. The isolated strains were tested for motility, gram reaction, cell and colony morphologies, pigmentation, biochemical characteristics, and antibiotic sensitivities. According to membrane glycerol diether moieties and antibiotic susceptibilities, all isolated strains were found to belong to the domain Archaea. All isolates were examined for the presence of plasmids by agarose gel electrophoresis and it was established that most isolates contained plasmids that varied in number and whose molecular sizes ranged from 1 to 36.9 kbp. Whole-cell protein profiles from isolates were analyzed by SDS-PAGE and a similarity dendogram was constructed using the UPGMA method. Significant similarities and differences were observed among the isolates. The strains were clustered in eight groups and ten of our isolates were placed in the same group with the standard strains. The current study represents the first isolation and characterization of such a large collection of archeal strains from Turkey. The text was submitted by the authors in English. Published in Russian in Mikrobiologiya, 2006, Vol. 75, No. 6, pp. 849–856.  相似文献   
5.
The phylogenetic diversity of 31 thermophilic bacilli belonging to genera Geobacillus and Aeribacillus were investigated which were isolated from various geothermal sites of Turkey. Twenty-seven of these isolates were found to be belonged within the genus Geobacillus, whereas 4 of them were identified as Aeribacillus pallidus. The comparative 16S rRNA gene sequence analyses revealed that the A. pallidus isolates displayed sequence similarity values from 98.0 to 99.6% to their closest relative. Furthermore, Geobacillus isolates showed sequence similarity values from 88.9 to 99.8% with the reference type strains. According to the phylogenetic analysis, isolates belonging to genus Geobacillus were diverged into nine clusters and among these isolates, 19 of them were identified as strains related to G. caldoproteolyticus, G. thermodenitrificans, G. stearothermophilus, G. thermoglucosidasius and G. toebii with the most abundant 13 isolates from G. caldoproteolyticus. Four of the Geobacillus isolates were named as unidentified mix group, as they found to be genetically very homogenous like their closely related type species: G. thermoleovorans, G. vulcani, G. lituanicus, G. kaustophilus, G. caldovelox, G. caldotenax, and G. uralicus. Moreover, the sequence comparisons of E173a, E265, C161ab and A142 isolates demonstrated that they represented novel species among genus Geobacillus as they shared lower than 96.7% sequence similarity to all the described type species. The AluI-, HaeIII- and TaqI-ARDRA results were in congruence with the 16S rRNA gene sequence analyses. By ARDRA results, the isolates were able to be differentiated and clustered, the discriminative restriction fragments of these isolates and type species were determined and the novelty of E173, E265, C161ab and A142 isolates could be displayed. Some differentiating phenotypic characters and the ability of amylase, glucosidase and protease production of these bacilli were also studied and biotechnologically valuable thermostable enzyme producing isolates were introduced in order to use in further studies.  相似文献   
6.
Maize β-glucosidase (β-d-glucoside glucohydrolase; EC 3.2.1.21) was extracted from coleoptiles of 15 maize genotypes (3 normals, 10 nulls, and 2 hybrids) in two fractions, the soluble and the insoluble. The enzyme activity was measured spectrophotometrically in the soluble fraction and also studied on zymograms after native gel electrophoresis and isoelectric focusing. The enzyme was purified from a normal genotype by anion-exchange chromatography and preparative electrophoresis. Antisera were raised in four rabbits, and the soluble and the insoluble extracts of each genotype were analyzed for a cross-reacting material by ELISA and immunoblotting. The results showed that extracts from both the normal and the null genotypes had β-glucosidase activity, and the activity measured spectrophotometrically was 2- to 10-fold higher in normals than in nulls. Zymograms of the null genotypes were devoid of distinct bands that were present in those of normals and hybrids from crosses between normals and nulls. Zymograms of both the normal and the null genotypes had a diffuse, smeared zone of activity at the cathodic end of native gels. A cross-reacting antigen was present in extracts of both genotypes when assayed by ELISA and a 60-kD polypeptide (β-glucosidase monomer) was detected by four different monospecific β-glucosidase antisera on Western blots by immunostaining. Moreover, six of seven null genotypes had a larger amount of their 60-kD polypeptide in the insoluble fraction than in the soluble fraction. These data show that both the null and the normal genotypes have similar amounts of the enzyme protein, but the enzyme occurs mostly as insoluble or poorly soluble polymers in nulls, and the monogenic inheritance reported for the null alleles of theglu locus is likely to be for a factor encoded by another locus which affects directly or indirectly the solubility of the enzyme by increasing its polymerization into large quaternary structures.  相似文献   
7.
We have partially purified and characterized two new thermostable exo-α-1,4-glucosidases (E.C.3.2.1.20) isolated from Geobacillus sp. A333 and thermophilic bacterium A343 strains. A333 α-glucosidase showed optimum activity at 60°C, pH 6.8 and had a value of 1.38 K m for the pNPG substrate, whereas these results were found to be 65°C, 7.0 and 0.85, respectively for A343 enzyme. Specificity for 20 different substrates and thin layer chromatography studies demonstrated that the A333 enzyme had high transglycosylation activity, and A343 had wide substrate specificity. The substrate specificity of A333 α-glucosidase was determined as maltose, dextrin, turanose, maltotriose, maltopentaose, meltotetraose, maltohexaose and phenyl-α-d-glycopyranoside. On the other hand, the A343 α-glucosidase mostly hydrolyzed dextrin, turanose, maltose, phenyl-α-d-glucopyranoside, maltotriose, maltotetraose, maltopentaose, isomaltose, saccharose and kojibiose by acting α-1,2, α-1,3, α-1,4 and α-1,6 bonds of these substrates. The relative activites of A333 and A343 enzymes were determined to be 83 and 92% when incubated at 60°C for 5 h whereas, the pH of 50% inactivation at 60°C for 15 h were determined to be pH 4.5/10.0 and pH 5.0/10.0, respectively. In addition, the results not only showed that both of the α-glucosidases were stable in a wide range of pH and temperatures, but were also found to be resistant to most of the denaturing agents, inhibitors and metal ions tested. With this study, thermostable exo-α-1,4-glucosidases produced by two new thermophilic strains were characterized as having biotechnological potential in transglycosylation reactions and starch hydrolysis processes.  相似文献   
8.
A total of 118 halophilic archaeal collection of strains were screened for lipolytic activity and 18 of them were found positive on Rhodamine agar plates. The selected five isolates were further characterized to determine their optimum esterase and lipase activities at various ranges of salt, temperature and pH. The esterase and lipase activities were determined by the hydrolysis of pNPB and pNPP, respectively. The maximum hydrolytic activities were found in the supernatants of the isolates grown at complex medium with 25% NaCl and 1% gum Arabic. The highest esterase activity was obtained at pH 8-8.5, temperature 60-65 degrees C and NaCl 3-4.5 M. The same parameters for the highest lipase activities were found to be pH 8, temperature 45-65 degrees C and NaCl 3.5-4 M. These results indicate the presence of salt-dependent and temperature-tolerant lipolytic enzymes from halophilic archaeal strains. Kinetic parameters were determined according to Lineweaver-Burk plot. The KM and V (max) values were lower for pNPP hydrolysis than those for pNPB hydrolysis. The results point that the isolates have higher esterase activity comparing to lipase activity.  相似文献   
9.
The diversity of archaeal strains from six hypersaline environments in Turkey was analyzed by comparing their phenotypic characteristics and 16S rDNA sequences. Thirty-three isolates were characterized in terms of their phenotypic properties including morphological and biochemical characteristics, susceptibility to different antibiotics, and total lipid and plasmid contents, and finally compared by 16S rDNA gene sequences. The results showed that all isolates belong to the family Halobacteriaceae. Phylogenetic analyses using approximately 1,388 bp comparisions of 16S rDNA sequences demonstrated that all isolates clustered closely to species belonging to 9 genera, namely Halorubrum (8 isolates), Natrinema (5 isolates), Haloarcula (4 isolates), Natronococcus (4 isolates), Natrialba (4 isolates), Haloferax (3 isolates), Haloterrigena (3 isolates), Halalkalicoccus (1 isolate), and Halomicrobium (1 isolate). The results revealed a high diversity among the isolated halophilic strains and indicated that some of these strains constitute new taxa of extremely halophilic archaea.  相似文献   
10.
An α-glucosidase producing, thermophilic, facultatively anaerobic, and endospore-forming, motile, rod-shaped bacterial strain F84b(T) was isolated from a high temperature well-pipeline sediment sample in Kizilcahamam, Turkey. The growth occurred at temperatures, pH and salinities ranging from 45 to 69oC (optimum 60oC), 7.0 to 8.5 (optimum 8.0) and 0 to 5% (w/v) (optimum 3.5%), respectively. Strain F84b(T) was able to grow on a wide range of carbon sources. Starch and tyrosine utilization, amylase, catalase and oxidase activities, nitrate reduction, and gas production from nitrate were all positive. The G+C content of the genomic DNA was 49.6 mol%. The menaquinone content was MK-7. The dominant cellular fatty acids were iso-C17:0, iso-C15:0, and C16:0. In phylogenetic analysis of 16S rRNA gene sequence, strain F84b(T) showed high sequence similarity to Geobacillus thermodenitrificans (99.8%) and to Geobacillus subterraneus (99.3%) with DNA hybridization values of 74.3% and 29.1%, respectively. In addition, the Rep-PCR and the intergenic 16S-23S rRNA gene fingerprinting profiles differentiated strain F84b(T) from the Geobacillus species studied. The results obtained from the physiological and biochemical characters, the menaquinone contents, the borderline DNA-DNA hybridization homology, and the genomic fingerprinting patterns had allowed phenotypic, chemotaxonomic and genotypic differentiation of strain F84b(T) from G. thermodenitrificans. Therefore, strain F84b(T) is assigned to be a new subspecies of G. thermodenitrificans, for which the name Geobacillus thermodenitrificans subsp. calidus, subsp. nov. is proposed (The type strain F84b(T) = DSM 22629(T) = NCIMB 14582(T)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号