首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   7篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1981年   2篇
  1977年   2篇
  1976年   4篇
  1973年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
1.
The Menkes P-type ATPase (MNK), encoded by the Menkes gene (MNK; ATP7A), is a transmembrane copper-translocating pump which is defective in the human disorder of copper metabolism, Menkes disease. Recent evidence that the MNK P-type ATPase has a role in copper efflux has come from studies using copper-resistant variants of cultured Chinese hamster ovary (CHO) cells. These variants have MNK gene amplification and consequently overexpress MNK, the extents of which correlate with the degree of elevated copper efflux. Here, we report on the localization of MNK in these copper-resistant CHO cells when cultured in different levels of copper. Immunofluorescence studies demonstrated that MNK is predominantly localized to the Golgi apparatus of cells in basal medium. In elevated copper conditions there was a rapid trafficking of MNK from the Golgi to the plasma membrane. This shift in steady-state distribution of MNK was reversible and not dependent on new protein synthesis. In media containing basal copper, MNK accumulated in cytoplasmic vesicles after treatment of cells with a variety of agents that inhibit endosomal recycling. We suggest that MNK continuously recycles between the Golgi and the plasma membrane and elevated copper shifts the steady-state distribution from the Golgi to the plasma membrane. These data reveal a novel system of regulated protein trafficking which ultimately leads to the efflux of an essential yet potentially toxic ligand, where the ligand itself appears directly and specifically to stimulate the trafficking of its own transporter.  相似文献   
2.
Glucose disappearance and lactate production by the rat thymocytes are stimulated significantly 45 min after addition of phytohaemagglutinin or concanavalin A and the stimulated rate is sustained for at least 8 h. Changes in the steady-state concentration of glycolytic intermediates that occur at non-equilibrium steps during the increased rate of glycolytic flux indicate that the glucose carrier, hexokinase and phosphofructokinase are potentially regulatory steps that undergo nearly simultaneous or tightly sequential activation following interaction of the cells with the mitogen.  相似文献   
3.
62 pyrrolizidine alkaloids and derivatives have been screened for acute and chronic hepato- and pneumotoxicity by the single dose method previously described. This procedure is satisfactory for the compounds of medium to high hepatotoxicity but failed to detect toxicity in certain other compounds of known, low hepatotoxicity. New findings significant in relation to hepatotoxicity are as follows: (i) On a molar basis, diesters of heliotridine and retronecine are about 4 times as toxic as the respective mono-esters and heliotridine esters are 2-4 times as toxic as retronecine esters. (ii) Crotanecine esters are less toxic than retronecine esters, and the 6,9-diester madurensine, 2-4 times less toxic than the 7,9-diester anacrotine (the difference being ascribed to there being only one reactive alkylating centre in the toxic metabolite from madurensine). (iii) Hepatotoxicity was confirmed for 7-angelylheliotridine but not observed for 9-angelyheliotridine and 7- and 9-angelylretronecine. (iv) Other significant compounds failing to induce hepatotoxicity were 9-pivalyl- and 7,9-dipivalyheliotridine, the alpha- and beta-epoxides of monocrotaline, 7-angelyl-1-methylenepyrrolizidine and the methiodides of monocrotaline and senecionine. The following compounds are readily converted by rat liver microsomes in vitro into dehydroheliotridine (or dehydroretronecine): 7- and 9-angelyheliotridine, 7- and 9-angelylretronecine, 7,9-dipivalylheliotridine and otosenine. 7,9-Divalerylheliotridine, the alpha- and beta-epoxides of monocrotaline, and retusamine yield pyrrolic metabolites more slowly. The preparation and characterisation of several alkaloid derivatives are described. Chronic lung lesions were produced by most compounds which gave chronic liver lesions, although a higher dose was required in some instances. This requirement may sometimes mean that chronic lung lesions cannot be induced because of the intervention of acute or peracute deaths. Apart from this factor, structure activity requirements for pneumotoxicity are the same as for hepatotoxicity, consistent with their being both caused by the same toxic metabolites.  相似文献   
4.
Escape from the host erythrocyte by the invasive stage of the malaria parasite Plasmodium falciparum is a fundamental step in the pathogenesis of malaria of which little is known. Upon merozoite invasion of the host cell, the parasite becomes enclosed within a parasitophorous vacuole, the compartment in which the parasite undergoes growth followed by asexual division to produce 16-32 daughter merozoites. These daughter cells are released upon parasitophorous vacuole and erythrocyte membrane rupture. To examine the process of merozoite release, we used P. falciparum lines expressing green fluorescent protein-chimeric proteins targeted to the compartments from which merozoites must exit: the parasitophorous vacuole and the host erythrocyte cytosol. This allowed visualization of merozoite release in live parasites. Herein we provide the first evidence in live, untreated cells that merozoite release involves a primary rupture of the parasitophorous vacuole membrane followed by a secondary rupture of the erythrocyte plasma membrane. We have confirmed, with the use of immunoelectron microscopy, that parasitophorous vacuole membrane rupture occurs before erythrocyte plasma membrane rupture in untransfected wild-type parasites. We have also demonstrated selective inhibition of each step in this two-step process of exit using different protease inhibitors, implicating the involvement of distinct proteases in each of these steps. This will facilitate the identification of the parasite and host molecules involved in merozoite release.  相似文献   
5.
Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. β- and γ-secretases, and Aβ have been identified in lipid rafts in cultured cells, human and rodent brains, but the role of copper in lipid raft amyloidogenic processing is presently unknown. In this study, we found that copper modulates flotillin-2 association with cholesterol-rich lipid raft domains, and consequently Aβ synthesis is attenuated via copper-mediated inhibition of APP endocytosis. We also found that total cellular copper is associated inversely with lipid raft copper levels, so that under intracellular copper deficiency conditions, Aβ·copper complexes are more likely to form. This explains the paradoxical hypermetallation of Aβ with copper under tissue copper deficiency conditions in AD.Imbalance of metal ions has been recognized as one of the key factors in the pathogenesis of Alzheimer disease (AD).2 Aberrant interactions between copper or zinc with the β-amyloid peptide (Aβ) released into the glutamatergic synaptic cleft vicinity could result in the formation of toxic Aβ oligomers and aggregation into plaques characteristic of AD brains (reviewed in Ref. 1). Copper, iron, and zinc are highly concentrated in extracellular plaques (2, 3), and yet brain tissues from AD (46) and human β-amyloid precursor protein (APP) transgenic mice (710) are paradoxically copper deficient compared with age-matched controls. Elevation of intracellular copper levels by genetic, dietary, and pharmacological manipulations in both AD transgenic animal and cell culture models is able to attenuate Aβ production (7, 9, 1115). However, the underlying mechanism is at present unclear.Abnormal cholesterol metabolism is also a contributing factor in the pathogenesis of AD. Hypercholesterolemia increases the risk of developing AD-like pathology in a transgenic mouse model (16). Epidemiological and animal model studies show that a hypercholesterolemic diet is associated with Aβ accumulation and accelerated cognitive decline, both of which are further aggravated by high dietary copper (17, 18). In contrast, biochemical depletion of cholesterol using statins, inhibitors of 3-hydroxy-3-methyglutaryl coenzyme A reductase, and methyl-β-cyclodextrin, a cholesterol sequestering agent, inhibit Aβ production in animal and cell culture models (1925).Cholesterol is enriched in lipid rafts, membrane microdomains implicated in Aβ generation from APP cleavage by β- and γ-secretases. Recruitment of BACE1 (β-secretase) into lipid rafts increases the production of sAPPβ and Aβ (23, 26). The β-secretase-cleaved APP C-terminal fragment (β-CTF), and γ-secretase, a multiprotein complex composed of presenilin (PS1 or PS2), nicastrin (Nct), PEN-2 and APH-1, colocalize to lipid rafts (27). The accumulation of Aβ in lipid rafts isolated from AD and APP transgenic mice brains (28) provided further evidence that cholesterol plays a role in APP processing and Aβ generation.Currently, copper and cholesterol have been reported to modulate APP processing independently. However, evidence indicates that, despite tissue copper deficiency, Aβ·Cu2+ complexes form in AD that catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides (e.g. hydroxynonenal and malondialdehyde), which contribute to oxidative damage observed in AD (2935). The underlying mechanism leading to the formation of pathological Aβ·Cu2+ complexes is unknown. In this study, we show that copper alters the structure of lipid rafts, and attenuates Aβ synthesis in lipid rafts by inhibition of APP endocytosis. We also identify a paradoxical inverse relationship between total cellular copper levels and copper distribution to lipid rafts, which appear to possess a privileged pool of copper where Aβ is more likely to interact with Cu2+ under copper-deficiency conditions to form Aβ·Cu2+ complexes. These data provide a novel mechanism by which cellular copper deficiency in AD could foster an environment for potentially adverse interactions between Aβ, copper, and cholesterol in lipid rafts.  相似文献   
6.
Small intracerebral blood vessels (microvessels) of bovine brain are known to contain the vasoactive amine histamine, and the presence of histamine-H1 receptors in microvessels was examined using the radioligand, [3H]mepyramine. Microvessels were isolated from cerebral cortex grey matter, striatum and hippocampus by a sieving technique and membranes prepared for binding studies. [3H]Mepyramine bound to a single, high affinity site, which displayed stereoselectivity for (+) chlorpheniramine relative to its (−) isomer and was consistent with binding to H1-receptors. The density of binding sites (Bmax), in microvessel membranes from cortical grey matter, was approximately one-third of that seen in membranes prepared from cortical grey matter. Microvessels isolated from striata and hippocampi had a similar density of H1-receptor sites to that seen in cortical microvessels.

These results demonstrate that bovine intracerebral microvessels contain significant numbers of histamine-H1 receptors and strengthen the hypothesis that histamine could regulate the calibre of intracerebral blood vessels.  相似文献   

7.
Differential screening of cDNA libraries constructed from knobby and predominantly knobless Plasmodium falciparum isolates, identified the sequence SD17. Chromosome blotting experiments have shown that this sequence, which is located on chromosome 2 of most isolates, was deleted in the cloned parasite line E12 of the FCQ27/PNG isolate. Here we show that erythrocytes infected with the SD17-containing cloned line D10 have typical knob structures on their surfaces, whereas those infected with the line E12 lack knobs. An expression clone was constructed from SD17 and used to affinity purify antibodies from the sera of individuals living in areas of Papua New Guinea where malaria is endemic. The antibodies reacted in immunoblotting experiments with a single polypeptide that varied in Mr from 85,000 to 105,000 among different isolates. The antigen was not expressed in the knobless clone E12. Postembedding immunoelectron microscopy showed localization of the antigen over the knobs of FC27 and two other isolates, largely on the cytoplasmic side. We conclude that the parasite antigen corresponding to clone SD17 is a knob protein.  相似文献   
8.
9.
The principal component of the amyloid which accumulates in Alzheimer's Disease brain is a 4-kDa βA4 fragment of the amyloid precursor protein (APP). Although APP has the structural features of an integral transmembrane receptor, there has been limited evidence for expression of APP at the plasma membrane. The function of APP and related molecules is unknown. Using rabbit antisera to purified human brain APP, surface labeling of APP is demonstrable in HeLa cells transfected with the APP695 isoform. Indirect immunofluorescence indicates the presence of APP at the surface of unfixed or aldehyde-fixed cells; preembedding immunoelectron microscopy using 5- or 1-nm gold particles and silver enhancement confirms plasma membrane labeling as well as labeling within intracellular membrane vesicles. Immunolabeling of unfixed cells at 4°C followed by incubation at 37°C shows APP within endocytic vesicles. Transfected HeLa cells with prominent surface APP were larger with more extensive microvilli than nonimmunoreactive HeLa cells. This is consistent with the postulated role of APP as a mediator of cell surface adhesion and membranematrix stabilization.  相似文献   
10.
Immunohistochemical studies have shown that oligodendroglial inclusions in multiple system atrophy contain alpha-synuclein, a synaptic protein also found in Lewy bodies in Parkinson's disease. We have now used density gradient enrichment and an anti-alpha-synuclein immunomagnetic technique to isolate pure and morphologically intact oligodendroglial inclusions from brain white matter of patients dying with multiple system atrophy. Filamentous inclusion structures were obtained only from multiple system atrophy tissue, but not from normal brain tissues, or from multiple system atrophy tissue processed without anti-alpha-synuclein antibody. We confirmed the purity and morphology of isolated inclusions by electron microscopy. The inclusions comprised multiple protein bands after separation by polyacrylamide gel electrophoresis. Immunoblotting demonstrated that these proteins included alpha-synuclein, alphaB-crystallin, tubulins, ubiquitin, and prominent, possibly truncated alpha-synuclein species as high-molecular-weight aggregates. Our study provides the first biochemical evidence that oligodendroglial inclusion filaments consist of multiple protein components, suggesting that these inclusions may form as a result of multiprotein interactions with alpha-synuclein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号