首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2023年   2篇
  2022年   1篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Changes in ambient temperature and solar radiation may affect sloths' metabolic rate and body temperature, with consequent changes in activities, postures and microhabitat selection. Although the separate effect of temperature and solar radiation on sloth's behaviour have been previously studied, the combined effect of these climatic factors on behavioural aspects of sloths has never been systematically evaluated in field conditions. Here we evaluated the influence of hourly ambient temperature variation on maned sloth (Bradypus torquatus) activities, postures and tree crown positions, under sunny and cloudy conditions; and tested if any of the animal posture and position increase their exposure to human detection. We performed 350 h of visual observation on eight maned sloths, equipped with radio-backpacks, in northern Bahia, Brazil, recording their activities, and their resting postures and positions on tree crowns. We also recorded the time taken to visualize the sloths on 58 days to analyse if sloths' detection is affected by posture and position. Higher ambient temperature, within a range of 21–33°C, increased the sloths' activity levels in cloudy conditions but reduced their activity in sunny conditions. Increasing ambient temperature also reduced the frequency of huddled posture and increased the frequency of extended posture and permanence in the inner tree crown. Lastly, the postures and positions did not influence sloths' detectability. Thus, the direction of the temperature–activity relationship depends on climatic conditions (sunny/cloudy), and individuals rely on resting postures and positions to thermoregulate. The warmer and drier future climate, expected to occur in the northern Atlantic Forest, may impose change in the diurnal activity levels and postural pattern for this threatened species, leading maned sloths to reduce its activity on sunny and warmer days and adopting an extended posture.  相似文献   
2.
In this article, we review intraspecific studies of basal metabolic rate (BMR) that address the correlation between diet quality and BMR. The "food-habit hypothesis" stands as one of the most striking and often-mentioned interspecific patterns to emerge from studies of endothermic energetics. Our main emphasis is the explicit empirical comparison of predictions derived from interspecific studies with data gathered from within-species studies in order to explore the mechanisms and functional significance of the putative adaptive responses encapsulated by the food-habit hypothesis. We suggest that, in addition to concentrating on the relationship among diet quality, internal morphology, and BMR, new studies should also attempt to unravel alternative mechanisms that shape the interaction between diet and BMR, such as enzymatic plasticity, and the use of energy-saving mechanisms, such as torpor. Another avenue for future study is the measurement of the effects of diet quality on other components of the energy budget, such as maximum thermogenic and sustainable metabolic rates. It is possible that the effects of diet quality operate on such components rather than directly on BMR, which might then push or pull along changes in these traits. Results from intraspecific studies suggest that the factors responsible for the association between diet and BMR at an ecological timescale might not be the same as those that promoted the evolution of this correlation. Further analyses should consider how much of a role the proximate and ultimate processes have played in the evolution of BMR.  相似文献   
3.
In this review, we summarize the energetic and physiological correlates of prey handling and ingestion in lizards and snakes. There were marked differences in the magnitude of aerobic metabolism during prey handling and ingestion between these two groups, although they show a similar pattern of variation as a function of relative prey mass. For lizards, the magnitude of aerobic metabolism during prey handling and ingestion also varied as a function of morphological specializations for a particular habitat, prey type, and behavior. For snakes, interspecific differences in aerobic metabolism during prey handling seem to be correlated with adaptations for prey capture (venom injection vs. constriction). During ingestion by snakes, differences in aerobic metabolism might be due to differences in cranial morphology, although allometric effects might be a potentially confounded effect. Anaerobic metabolism is used for prey handling and ingestion, but its relative contribution to total ATP production seems to be more pronounced in snakes than in lizards. The energetic costs of prey handling and ingestion are trivial for both groups and cannot be used to predict patterns of prey-size selection. For lizards, it seems that morphological and ecological factors set the constraints on prey handling and ingestion. For snakes, besides these two factors, the capacity of the cardio-respiratory system may also be an important factor constraining the capacity for prey handling and ingestion.  相似文献   
4.
Journal of Plant Research - In mixed-ploidy populations, newly formed polyploids initially occur at low frequencies when compared to diploids. However, polyploidy may lead to morphological and...  相似文献   
5.
We examine here the thermal physiology of the ash-grey mouse, as there is a paucity of data to explain how Australian rodents meet thermoregulatory demands. Most ash-grey mice remained normothermic over a range of ambient temperatures (10°C to 30°C), although they became hyperthermic at high ambient temperatures. One individual entered torpor at ambient temperatures of 20°C and 25°C, with minimal body temperatures of 24.5°C and 28.4°C respectively, before spontaneously arousing. This is the first evidence of torpor use by an Australian murine rodent. Our data suggest that although ash-grey mice have the physiological ability to use torpor, it is used rarely, presumably due to other behavioural and physiological adaptations. Their higher-than-expected basal metabolic rate (1.56±0.25mLO(2)g(-1)h(-1)) indicates that ash-grey mice do not have a frugal approach to energy expenditure. Other standard physiological variables were typical of a generalised rodent. A readily-available omnivorous diet, nocturnal activity, semi-fossorial habit and social behaviour presumably allow a high energy lifestyle. A reluctance to use torpor, despite an apparent physiological ability to do so, supports the idea that the use of torpor reflects a net balance between the costs and benefits of a heterothermic thermoregulatory strategy.  相似文献   
6.
When exposed to hypoxia, eels Anguilla anguilla were able to regulate and maintain Vo2 down to a water oxygen tension ( Pwo2 ) of about 25 mmHg, a value far below those reported in other studies. When exposed to hypercapnia, eels showed a depression in Vo2 as water carbon dioxide tension ( Pwco2 ) increased. Faced with combined hypoxia-hypercapnia, eels showed an increase in their sensitivity to hypoxia, and the critical oxygen tension increased to 40–45 mmHg. The possible mechanisms underlying these responses were discussed, and the implications of such findings for extensive culture of eels were highlighted.  相似文献   
7.
The honey possum is the only non-volant mammal to feed exclusively on a diet of nectar and pollen. Like other mammalian and avian nectarivores, previous studies indicated that the honey possum’s basal metabolic rate was higher than predicted for a marsupial of equivalent body mass. However, these early measurements have been questioned. We re-examined the basal metabolic rate (2.52 ± 0.222 ml O2 g−1 h−1) of the honey possum and confirm that it is indeed higher (162%) than predicted for other marsupials both before and after accounting for phylogenetic history. This, together with its small body mass (5.4 ± 0.14 g; 1.3% of that predicted by phylogeny) may be attributed to its nectarivorous diet and mesic distribution. Its high-basal metabolic rate is associated with a high-standard body temperature (36.6 ± 0.48°C) and oxygen extraction (19.4%), but interestingly the honey possum has a high point of relative water economy (17.0°C) and its standard evaporative water loss (4.33 ± 0.394 mg H2O g−1 h−1) is not elevated above that of other marsupials, despite its mesic habitat and high dietary water intake.  相似文献   
8.
Aside from the pervasive effects of body mass, much controversy exists as to what factors account for interspecific variation in basal metabolic rates (BMR) of mammals; however, both diet and phylogeny have been strongly implicated. We examined variation in BMR within the New World bat family Phyllostomidae, which shows the largest diversity of food habits among mammalian families, including frugivorous, nectarivorous, insectivorous, carnivorous and blood-eating species. For 27 species, diet was taken from the literature and BMR was either measured on animals captured in Brazil or extracted from the literature. Conventional (nonphylogenetic) analysis of covariance (ANCOVA), with body mass as the covariate, was first used to test the effects of diet on BMR. In this analysis, which assumes that all species evolved simultaneously from a single ancestor (i.e., a "star" phylogeny), diet exerted a strong effect on mass-independent BMR: nectarivorous bats showed higher mass-independent BMR than other bats feeding on fruits, insects or blood. In phylogenetic ANCOVAs via Monte Carlo computer simulation, which assume that species are part of a branching hierarchical phylogeny, no statistically significant effect of diet on BMR was observed. Hence, results of the nonphylogenetic analysis were misleading because the critical values for testing the effect of diet were underestimated. However, in this sample of bats, diet is perfectly confounded with phylogeny, because the four dietary categories represent four separate subclades, which greatly reduces statistical power to detect a diet (= subclade) effect. But even if diet did appear to exert an influence on BMR in this sample of bats, it would not be logically possible to separate this effect from the possibility that the dietary categories differ for some other reason (i.e., another synapomorphy of one or more of the subclades). Examples such as this highlight the importance of considering phylogenetic relationships when designing new comparative studies, as well as when analyzing existing data sets. We also discuss some possible reasons why BMR may not coadapt with diet.  相似文献   
9.
This study evaluated the thermogenic capacity of three species of fruit-eating phyllostomid bats (Carollia perspicillata, Sturnira lilium and Artibeus lituratus) during the dry-cool and wet-warm seasons, by measuring changes in body mass, basal metabolic rate (BMR), maximal metabolic rate (MMR), nonshivering thermogenesis and shivering thermogenesis. Body mass was lower, on average, during the dry-cool season and all species of fruit-eating bats showed an increase in oxygen consumption after noradrenaline injection and after exposure to a He-O2 atmosphere. However, the magnitude of this increase was similar in both seasons. BMR also did not vary between seasons. Although, our results showed for the first time that all three species studied were able to increase thermogenesis by both nonshivering and shivering thermogenesis, we did not find significant differences in any thermoregulatory variable measured when comparing data from the two different seasons. Probably the difference in the mean and variance of the temperature profile between seasons were not strong enough to alter the thermogenic capacity of these species. Furthermore, the use of alternative physiological (torpor) or behavioral (huddling) strategies might have alleviated the need to trigger energetic-costly thermogenic responses.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号