首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
  2023年   1篇
  2021年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1977年   2篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Molecular systematists need increased access to nuclear genes. Highly conserved, low copy number protein-encoding nuclear genes have attractive features for phylogenetic inference but have heretofore been applied mostly to very ancient divergences. By virtue of their synonymous substitutions, such genes should contain a wealth of information about lower-level taxonomic relationships as well, with the advantage that amino acid conservatism makes both alignment and primer definition straightforward. We tested this postulate for the elongation factor-1 alpha (EF-1 alpha) gene in the noctuid moth subfamily Heliothinae, which has probably diversified since the middle Tertiary. We sequenced 1,240 bp in 18 taxa representing heliothine groupings strongly supported by previous morphological and allozyme studies. The single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree. Homoplasy and pairwise divergence levels are low, transition/transversion ratios are high, and phylogenetic information is spread evenly across gene regions. The EF-1 alpha gene and presumably other highly conserved genes hold much promise for phylogenetics of Tertiary age eukaryote groups.   相似文献   
2.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
3.
4.
Experimental allergic encephalomyelitis (EAE) is a CNS autoimmune disease mediated by the action of CD4(+) T cells, macrophages, and proinflammatory cytokines. IL-10 is a cytokine shown to have many anti-inflammatory properties. Studies have shown both inhibition and exacerbation of EAE after systemic IL-10 protein administration. We have compared the inhibitory effect in EAE of Il10 gene delivery in the CNS. Fibroblasts transduced with retroviral vectors expressing IL-10 could inhibit EAE. This was not associated with a prevention of cellular recruitment but an alteration in their phenotype, notably an increase in the numbers of CD8(+) T and B cells. In marked contrast, CNS delivery of adenovirus coding for mouse IL-10 or IL-10 protein performed over a wide dose range failed to inhibit disease, despite producing similar or greater amounts of IL-10 protein. Thus the action of IL-10 may differ depending on the local cytokine microenvironment produced by the gene-secreting cell types.  相似文献   
5.
In this study we report on the optimisation of the technologies for generation of a global metabolomics profile for intracellular metabolites in Chinese hamster ovary (CHO) cells. We evaluated the effectiveness of a range of different extraction methods applied to CHO cells which had been quenched using a previously optimised approach. The extraction methods tested included cold methanol, hot ethanol, acid, alkali and methanol/chloroform plus combinations of these. The extraction of metabolites using two 100% methanol extractions followed by a final water extraction recovered the largest range of metabolites. For the majority of metabolites, extracts generated in this manner exhibited the greatest recovery with high reproducibility. Therefore, this was the best extraction method for attaining a global metabolic profile from a single sample. However, another parallel extraction method (e.g. alkali) may also be required to maximise the range of metabolites recovered (e.g. non-polar metabolites).  相似文献   
6.

Background

Studies on host-pathogen interactions in a range of pathosystems have revealed an array of mechanisms by which plants reduce the efficiency of pathogenesis. While R-gene mediated resistance confers highly effective defense responses against pathogen invasion, quantitative resistance is associated with intermediate levels of resistance that reduces disease progress. To test the hypothesis that specific loci affect distinct stages of fungal pathogenesis, a set of maize introgression lines was used for mapping and characterization of quantitative trait loci (QTL) conditioning resistance to Setosphaeria turcica, the causal agent of northern leaf blight (NLB). To better understand the nature of quantitative resistance, the identified QTL were further tested for three secondary hypotheses: (1) that disease QTL differ by host developmental stage; (2) that their performance changes across environments; and (3) that they condition broad-spectrum resistance.

Results

Among a set of 82 introgression lines, seven lines were confirmed as more resistant or susceptible than B73. Two NLB QTL were validated in BC4F2 segregating populations and advanced introgression lines. These loci, designated qNLB1.02 and qNLB1.06, were investigated in detail by comparing the introgression lines with B73 for a series of macroscopic and microscopic disease components targeting different stages of NLB development. Repeated greenhouse and field trials revealed that qNLB1.06 Tx303 (the Tx303 allele at bin 1.06) reduces the efficiency of fungal penetration, while qNLB1.02 B73 (the B73 allele at bin 1.02) enhances the accumulation of callose and phenolics surrounding infection sites, reduces hyphal growth into the vascular bundle and impairs the subsequent necrotrophic colonization in the leaves. The QTL were equally effective in both juvenile and adult plants; qNLB1.06 Tx303 showed greater effectiveness in the field than in the greenhouse. In addition to NLB resistance, qNLB1.02 B73 was associated with resistance to Stewart's wilt and common rust, while qNLB1.06 Tx303 conferred resistance to Stewart's wilt. The non-specific resistance may be attributed to pleiotropy or linkage.

Conclusions

Our research has led to successful identification of two reliably-expressed QTL that can potentially be utilized to protect maize from S. turcica in different environments. This approach to identifying and dissecting quantitative resistance in plants will facilitate the application of quantitative resistance in crop protection.  相似文献   
7.
Multiple sclerosis (MS) is an autoimmune CNS demyelinating disease in which infection may be an important initiating factor. Pathogen-induced cross-activation of autoimmune T cells may occur by molecular mimicry. Infection with wild-type Theiler's murine encephalomyelitis virus induces a late-onset, progressive T cell-mediated demyelinating disease, similar to MS. To determine the potential of virus-induced autoimmunity by molecular mimicry, a nonpathogenic neurotropic Theiler's murine encephalomyelitis virus variant was engineered to encode a mimic peptide from protease IV of Haemophilus influenzae (HI), sharing 6 of 13 aa with the dominant encephalitogenic proteolipid protein (PLP) epitope PLP(139-151). Infection of SJL mice with the HI mimic-expressing virus induced a rapid-onset, nonprogressive paralytic disease characterized by potent activation of self-reactive PLP(139-151)-specific CD4(+) Th1 responses. In contrast, mice immunized with the HI mimic-peptide in CFA did not develop disease, associated with the failure to induce activation of PLP(139-151)-specific CD4(+) Th1 cells. However, preinfection with the mimic-expressing virus before mimic-peptide immunization led to severe disease. Therefore, infection with a mimic-expressing virus directly initiates organ-specific T cell-mediated autoimmunity, suggesting that pathogen-delivered innate immune signals may play a crucial role in triggering differentiation of pathogenic self-reactive responses. These results have important implications for explaining the pathogenesis of MS and other autoimmune diseases.  相似文献   
8.
9.
10.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号